Automatic Software Upgrades for Distributed Systems
by
Sameer Ajmani

Submitted to the Department of Electrical Engineering anth@uter Science
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2004

© Massachusetts Institute of Technology 2004. All righteresd.

AULNOT . e
Department of Electrical Engineering and Computer Science
August 18, 2004

Certified DY
Barbara H. Liskov

Professor

Thesis Supervisor

ACCEPIE DY . .
Arthur C. Smith
Chairman, Department Committee on Graduate Students

www.manaraa.com

Automatic Software Upgrades for Distributed Systems

by
Sameer Ajmani

Submitted to the Department of Electrical Engineering anch@uter Science
on August 18, 2004, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Science

Abstract

Upgrading the software of long-lived, highly-availablestributed systems is flicult. It is not
possible to upgrade all the nodes in a system at once, sime sodes may be unavailable and
halting the system for an upgrade is unacceptable. Instgagtades may happen gradually, and
there may be long periods of time whetrifdrent nodes are runningftérent software versions and
need to communicate using incompatible protocols. We ptesenethodology and infrastructure
that address these challenges and make it possible to @pdislibuted systems automatically
while limiting service disruption.

Our methodology defines how to enable nodes to interopecatsaversions, how to preserve
the state of a system across upgrades, and how to schedybgaue so as to limit service disrup-
tion. The approach is modular: defining an upgrade requineeistanding only the new software
and the version it replaces.

The upgrade infrastructure is a generic platform for distting and installing software while
enabling nodes to interoperate across versions. The inftasre requires no access to the system
source code and is transparent. node software is unawdrdifiieent versions even exist. We have
implemented a prototype of the infrastructure called Upsteat intercepts socket communication
using a dynamically-linked €+ library. Experiments show that Upstart has low overhead and
works well for both local-area and Internet systems.

Thesis Supervisor: Barbara H. Liskov
Title: Professor

www.manaraa.com

Acknowledgments

First, | thank my advisor, Barbara Liskov, for insisting thainderstand my research as deeply as
possible and present it as clearly as possible. | have ldaxha working with her.

Next, | thank my thesis readers: Michael Ernst, Daniel Jacksnd Liuba Shrira. | thank
Michael for his encouragement, support, and good advidearik Daniel for forcing me to consider
several important details that | might have otherwise @adabd. | thank Liuba for dissenting with
Barbara and me often in the course of this research: mostedirie, we eventually realized that
Liuba was right all along.

| thank all my (past and present) coworkers here at MIT fovfling good friendship and fun
times: Atul Adya, Sarah Ahmeds, Chandrasekhar BoyapatiukliCastro, Kathryn Chen, Dorothy
Curtis, Anjali Gupta, Ben Leong, Nick Mathewson, ChuangeHJoh, Andrew Myers, Steven
Richman, Rodrigo Rodrigues, Zigiang Tang, Ben Vandivegrsigling Woo, and Yan Zhang.

| thank my parents for their lifetime of support. Dad set aagjiexample of how to succeed with
hard work. Mom made sure | never got so caught up in work thadtitrack of what really matters.

| thank my hyper-talented sister, Shama, a.k.a. Angel tree/itist, for providing much-needed
support during diicult times and for just being so darn cool.

Finally, | thank my wife, Mandi. | cannot put into words whatrHove and support have done
for me. All | can say is that without her, | wouldn’t be wheremh@&oday. She is the greatest blessing

of my life, and | thank God every day for bringing us together.

www.manaraa.com

Contents

1 Introduction 12
1.1 Goals 12
1.2 SystemModel e 14
1.3 OurApproach 15
1.4 Contributions e 16
15 RelatedWork 17
1.6 Outline 91

2 Upgrades 20
2.1 SystemModel 20
2.2 Upgrade Model 21
2.3 HowanUpgrade Happens i 22

231 CatchingUp 26
2.4 Upgrade COmMpoNents o o v ittt e e e 26
2.4.1 SimulationObjects 27
2.4.2 Transform Functions 27
2.4.3 SchedulingFunctions 28
25 Example e e e 92
251 Model e 30
2.5.2 SchedulingFunctions 30
2.5.3 SimulationObjects 31
2.5.4 Transform Functionso oo e 31
3 Specifying Upgrades 32

www.manharaa.com

3.1.1 Failures 33

3.1.2 Subtypes e e 33
3.2 ClassUpgrades i it e 34
3.3 Requirements 35
3.4 DefiningUpgrades e 37
341 SameType e 38
3.4.2 Subtype e 38
3.4.3 SUupertype e e e e e e 40
344 Unrelated Type o e 14
345 DisallowedCalls 48
3.5 Example e 15
351 Invariant 52
3.5.2 Mapping Function 35
3.5.3 ShadowMethods 53
3.5.4 Implementation Considerations 54
3.6 Realizing the Sequence Requirement 55
3.6.1 Inexpressible New Methods 57
3.6.2 Inexpressible OldMethods 58
3.6.3 ShadowsofShadows 9 5
Simulation Obijects 61
4.1 Previous Approaches e 62
4.2 InterceptorModel 66
4.2.1 DISCUSSION e 66
422 COITECINESS o e e e e 8 6
4.3 DirectModel 68
4.3.1 Expressive Power e e 69
4.4 Hybrid Model 71
441 Rules 72
4.4.2 DISCUSSION e 73
4.5 Notification Model e 77
451 DisallowedCalls19
5

www.manaraa.com

4.5.2 Implementing Notifications 79

4.5.3 DISCUSSION 83
4.6 Concurrency Control 83
4.6.1 Failures 85
4.7 DISCUSSION e 85
47.1 ReasonstoDisallow 86
Transform Functions 89
5.1 BaseModel 09
51.1 Recovering SOS. i e 19
5.2 Requirements e e 93
5,21 TransparencCy i e e e e e e e 39
5.2.2 RunsAtAnyTime e 94
5.2.3 Restartability 94
Scheduling Functions 96
6.1 Examples e 6 9
6.2 INPULS e e 89
6.21 NodeState 99
6.2.2 ObjectState 99
6.2.3 Upgrade Database, 001
6.2.4 NodeDatabase 0 10
6.3 Guidelines 101
Implementation 103
7.1 DesignGoalsandTrad@®., 104
7.2 OVEIVIEBW o 051
7.3 Upgrade Server e e e e 106
7.3.1 Configurations e 071
7.3.2 upcheck 107
7.4 Upgrade Database e 109
7.5 Simulation Objects 110
7.5.1 Programming SOS e 011
6

www.manaraa.com

7.6 Upgrade Layer i i i e 113

7.6.1 UpgradeHandler 141
7.6.2 Upgrade Manager. i i i it e e e 161
8 Evaluation 119
8.1 Overhead 191
8.1.1 NullRPC e 120
8.1.2 TCPdatatransfer 121
8.1.3 DHashblockfetch 241
8.1.4 Summary e e e 124
8.2 Qualitative Results e e 129
8.2.1 SimulationObjects 129
8.2.2 Transform Functions 130
8.2.3 Scheduling Functions 0. 130
9 Related Work 133
9.1 Supporting MixedMode 134
9.1.1 SchemaEvolution 351
9.1.2 Related Approaches 136
9.2 LimitedMixedMode 137
9.2.1 CompatibleUpgrades 138
9.3 Avoiding MixedMode 138
9.4 State Management e e e e e 140
10 Conclusions 142
10.1 Methodology e e e 142
10.2 Infrastructure 144
10.3 Future Work 144
10.3.1 Incremental Transform Functions 144
10.3.2 DealingwithErrors. 145
10.3.3 ExtendingtheModel 148
10.4 Conclusion 150
A Configurations 151

www.manaraa.com

B Dispatch Tables and Delegation Chains 154

www.manharaa.com

List of Figures

2-1 Theupgrade infrastructure e 23
2-2 Howanupgrade happens. i i i e e e 24
2-3 State transform for a node upgrade from versionitéi 28

3-1 Specification fointSet 33
3-2 Specification foiColorSet e 41
3-3 Specification foFlavorSet e e 44
4-1 Systems for supporting multiple typesonasinglenade. 64

4-2 Theinterceptormodel 67
4-3 Thedirectmodel 69
4-4 Thehybridmodel. e 74
4-5 Pseudocode for &olorSetfuture SO 75
4-6 Thereverse-hybridmodel. 76
4-7 Thedelay-hybridmodel 77
4-8 The notificationmodel 78
4-9 Pseudocode for the normal interface ofalorSet future SO. 80

4-10 Pseudocode for the notification interfaces dalorSet future SO 81

4-11 Pseudocode for a notification wrapper fmtSet 82

5-1 Transform function for a node upgrade from versioni4di 89

7-1 Components of the Upstart prototype 105
7-2 Aconfigurationfile. 108
7-3 Output ofupcheck e e 108
7-4 C++signature forSOs. 111

www.manaraa.com

7-5 C++signatureforSUNRPCSOs. 112

7-6 Factory procedures for creating simulation objects 112
7-7 Process structure of the upgrade layer. 113
7-8 C++signature for SUnRPCproxies 113
7-9 C++signature forproxies 114
7-10 Factory procedure for creating proxies. 114
8-1 Time todoanullRPConagigabit LANE40000) 122
8-2 Time to do a null RPC from MIT to UC San Diego{N0000) 123
8-3 Time to transfer 100 MB on a gigabit LAN€400) 125
8-4 Time to transfer 1 MB from MIT to UC San Diego£M00). 126
8-5 Time to fetch an 8 KB block from DHash on a gigabit LAN-P8) 127
8-6 Time to fetch an 8 KB block from DHash on the Internet?88). 128
8-7 Cumulative fraction of upgraded nodesonPlanetLab 131
9-1 Unchained handlers vs. chained handlets. 135

10

www.manharaa.com

List of Tables

4.1 Comparison of simulatonmodels 86

11

www.manharaa.com

Chapter 1

Introduction

Long-lived Internet services face challenging and evamrging requirements. Services must man-
age huge gquantities of valuable data and must make that dailalde continuously to rapidly
growing client populations. Examples include online ersailvices [19], search engines [34], per-
sistent online games [11], scientific and financial data ggemg systems [6], content distribution
networks [14], and file sharing networks [8, 15].

The systems that provide these services are large: theyarpased of hundreds or thousands
of machines, and machines inffidirent data centers are separated by the untrusted andaleeli
Internet. At such scales, failure is the norm: some fracibmachines will sier from hardware
and software failures; the network will drop messages amdesiones partition altogether; and the
occasional malicious attack or operator error can causesdigtable and catastrophic faults.

As a result, the software for these systems is complex arichedd changes (upgrades) over
time to fix bugs, add features, and improve performance. Thddmental challenge addressed in
this thesis is how to upgrade the software of long-livedritisted systems while allowing those

systems to continue to provide service during upgrades.

1.1 Goals

Our aim is to create a flexible and geneaittomatic upgrade systettmat enables systems to provide
service during upgrades. This section describes the goathé upgrade system; in this context,
theupgraderis the person who defines upgrades and uses the upgrade system

The first set of goals has to do with thpgrade modegli.e., what an upgrade can be:

12

www.manaraa.com

Simplicity The upgrade model must be easy to use. In particular, we madularity to define
a new upgrade, the upgrader should only need to understanceldtionship between the

current version of the system software and the new one.

Generality The upgrade model must not limit expressive power, i.e.,@grade should be able to

change the software of the system in arbitrary ways. Thislgastwo parts:

Incompatibility The new version must be allowed to be incompatible with tideonle, e.g.,
it can stop supporting legacy behavior and can change comeation protocols. This
is important because otherwise later versions of the systerst continue to support

legacy behavior, which complicates software and makessgtiebust.

Persistence The systems of interest have valuable persistent stateiisttsurvive upgrades.
Therefore, upgrades must allow the preservation and wamsition of persistent state.
This can be costly, because each node may have very large(stgt, gigabytes or
terabytes), and transforming this state to the repredenta¢quired by the new soft-
ware may require reading and writing the entire state (¢ogadd a new property to
every file in a file system). Even modest transforms are tiorvesaming: the maximum
read throughput of the fastest enterprise-class disks/tisdaround 150 MBs, and the
reagwrite throughput of most disks is between 10 and 40/MRO03]. A transform that
reads then writes 10 GB of data may require from two to 30 neimaif downtime; and
a transform of 200GB may require five hours of downtime.

It is explicitly not a requirement that upgrades preservatle state. Upgrades are not
very frequent, because organizations do not want to releasesoftware until, ideally,
it is free of errors; in reality they aim to get rid of most ersdahrough rigorous testing.
Therefore, new versions are deployed on a schedule thatdesltime for develop-
ment and testing. Such a schedule might allow three montha foinor release and
significantly more time for a major release. Organizationghtirelease patches more
frequently, but even then itis likely to take a few days or ksebefore the new software
is ready to go. Therefore, it is acceptable to lose volatdéesn such infrequent events;
but it is not acceptable to lose persistent state, as theyelbmano way to recover it.
For example, it is acceptable to drop open connections acdnimitted writes to a file

system, but it is not acceptable to lose the files themselves.

13

www.manaraa.com

The second set of goals has to do with how an upgrade happens:

Automatic Deployment The systems of interest are too large to upgrade manuad}y, (ga remote
login). Therefore, upgrades must be deployed automaticdie upgrader defines an upgrade
at a central location, and the upgrade system propagatagtirade and installs it on each

node.

Controlled Deployment The upgrader must be able to control when nodes upgrade hdthame
precision as if the upgrader did it manually. There are maasons for controlled deploy-
ment, including: enabling a system to provide service whileupgrade is happening, e.g.,
by upgrading replicas in a replicated system one-at-a-{timis is especially important when
the upgrade involves a time-consuming state transformsjinig an upgrade on a few nodes
before installing it everywhere; and scheduling an upgtadeappen at times when the load

on the nodes being upgraded is light.

Mixed Mode Operation Controlled deployment implies upgrades agynchronousi.e., nodes
can upgrade independently and at any time. This means thayebmlong periods of time
when the system is running mixed modegi.e., when some nodes have upgraded and others
have not. Nonetheless, the system must provide servicevaven the upgrade is incompati-
ble. This implies the upgrade system must provide a way fdeagunning dferent versions

to interoperate (without restricting the kinds of changesipgrade can make).
1.2 System Model

We are interested in providing upgrades for large, longdidistributed systems. For our purposes,
a distributed system is any collection of nodes (machirtes) cooperate to perform a task. Nodes
are connected by a network and coordinate their actions blgagging messages. We assume an
asynchronous, unreliable network that may delay, losesdexp duplicate, or modify messages.
Links may go down; nodes may disconnect and continue to mohilze network may partition for
extended periods of time.

Our approach takes advantage of the fact that long-livetesys arerobust These systems
tolerate communication problems: remote procedure cadlg fail, and callers know how to com-
pensate for such failures, e.g., by degrading service opringtwith another node.

Robust systems are are prepared for nodes to fail at aspitirmes. Nodes can recover from

failure; when they do, they restart their software and reghie system. Nodes also recover their

14

www.manaraa.com

persistent state, e.g., they store it on disk, and when thegver, they initialize their state from
what is on disk.

We will take advantage of our robustness assumption to degnades: a node upgrades by
failing (and losing its volatile state), replacing the otiftevare with the new software, transforming
its persistent state (if required), and restarting with tiesv software (which recovers from the

newly-transformed state).

1.3 Our Approach

To create an upgrade, the upgrader defines the new softwateefeystem and some additional
information to support the controlled deployment, peesise, and mixed-mode requirements. The
upgrader then “launches” the upgrade, and the upgradensykies the rest.

The additional information consists of the following soéive components:

Scheduling Functions define when nodes should upgrade. We provide support for a véadety

of schedules.

Transform Functions define how nodes’ persistent state must change as requirdt: mew ver-

sion. They can be omitted if no change is required.

Simulation Objects are adapters [50] that enable nodes to support calls frorasadhning other
versions. They are only needed for upgrades that change oaioation protocols. There are

two kinds:

Future Simulation Objects define how nodes handle messages intended for their new soft-

ware before they upgrade.

Past Simulation Objects define how nodes handle messages intended for their oldaeftw

after they upgrade.

Because upgrades are infrequent, we expect that commotisdass nodes run the same software
version. We optimize for this case by enabling such nodestonecunicate ficiently. Our ap-
proach will work correctly even when upgrades occur fredlyesind cross-version communication
is common, but system performance may degrade.

An important feature of our approach is that it separatesdhlponsibilities of the implementor

of the system software and the upgrader. The implementatesaew software for the system and

15

www.manaraa.com

ensures that it works when all the nodes are running just éwe software. The upgrader defines
the upgrade itself, which includes defining the componeastibed above.

Separating the responsibilities of the implementor anduihgrader makes software develop-
ment easier. Many systems nowadays are burdened with prgvipport for legacy behavior.
This makes software more complex, moréidult to maintain, and less robust. Moving support for
interoperation out of the software and into simulation otgecan make systems simpler and more
robust. And since simulation objects are separate modubes the system software, using them
does not restrict how the system software is implemented.

This separation of responsibilities also means the upgrddes not need to understand the
details of the system software implementation and does aesaks to its source code. The upgrader
just needs to understand the interfaces between nodes anithéyp structure their persistent state.

Our approach gives the upgrader lots of flexibility. Someragdgs can be done eagerly, i.e.,
nodes upgrade as soon as they learn that a new version iatdeail This is appropriate if the
upgrade fixes a major error or if the disruption caused byaltisg the new software is minor.
Other upgrades can be done more slowly, in a way that allovsdutesting or that allows clients
to move gradually to a newer version. Using simulation aigjée enable clients to “run in the past”
reduces pressure on an organization to make new versiomsvaet compatible and so enables
them create simpler (and more likely correct) software.

Once the upgrader has defined an upgradeypiggade infrastructurgakes over and makes the
upgrade happen automatically. The upgrade infrastructonsists of a centralpgrade servethat
stores upgrade definitions and per-noggrade layershat propagate and install upgrades. Upgrade
layers also enable the system to support mixed mode by eqtng all inter-node communication
and using simulation objects to translate between nodesngrdiferent versions. Perfect sim-
ulation is not always possible; when it's not, some crogsive calls may fail and service may
degrade.

Chapter 2 presents the details of how an upgrade happenspteeh@ and 4 discuss when

cross-version calls may need to fail.

1.4 Contributions

We make two major contributions: a methodology for definingoanatic upgrades and an infras-

tructure for deploying them.

16

www.manaraa.com

Our methodology includes new techniques for schedulingrages (scheduling functions),
managing persistent state (transform functions), andlewwabross-version interoperation (simu-
lation objects). The methodology allows for exceptionaipressive simulation objects and can
enable interoperation between nodes separated by ayhitusanbers of upgrades. Nonetheless, the
methodology is modular: to define a new upgrade, the upgmadgrmeeds to understand the rela-
tionship between the current version of the system softaatethe new one.

A vital part of our methodology is a new way to specify mukiglypes for a single node and
maintain relationships between the states accessibldesettypes. This enables clients to know
what to expect when they upgrade and start using the syseemnew version or when they interact
with other clients running dlierent versions. The methodology also introduces severdetador
how to use simulation objects to implement a node’s types.

The second major contribution of this thesis is a new inftacstire for automatically deploying
upgrades on distributed systems. The design of the infretsire is generic: it can be realized
for a variety of platforms, from distributed object systefs60, 79] to systems whose processes
communicate via raw sockets.

We have implemented a prototype upgrade infrastructurledcdlpstart. Upstart intercepts
communication at the socket layer using a dynamicallydohiC++ library and so is transparent
to applications. We have measured the overhead of Upstasef@ral applications on both local-
area networks and on the Internet, and we show it to be pehdtic many kinds of systems. We
have also run large-scale upgrade experiments on Plan&ildgmonstrate that our approach scales

and works well.

1.5 Related Work

We review related work briefly here; we provide a full disdossin Chapter 9.

There are many real-world systems that enable an admitistta manage the software of
nodes in a distributed system from a central location [1, 9, &0, 18, 55, 96, 104]. Unlike our
approach, these do little to ensure that a system contioy@®evide service during an upgrade. The
fundamental problem is that these approaches do not enalyigt@m to provide service in mixed
mode, i.e., when some nodes have upgraded and others have not

Real-world organizations typically avoid mixed mode bytaling upgrades during scheduled

downtime, but this approach is unacceptable for systemisnthest provide continuous service.

17

www.manaraa.com

For systems composed of several independent (non-comatungy data centers, it is possible to
provide service during upgrades by upgrading one data cahi@ time and redirecting clients to
the non-upgrading data centers [51]. This approach regjuast resources and does not work when
nodes in diferent data centers must communicate.

When mixed mode cannot be avoided, systems must somehove eipgioaded and non-upgraded
nodes to interoperate. Many real-world organizations de Ity restricting how an upgrade may
change the system software. For example, if an upgrade tahaoge how nodes communicate,
upgraded and non-upgraded nodes can always interoperais.reuirement can be relaxed for
client-server systems: an upgrade can change the clierdrsprotocol provided the change is
backward compatiblei.e., the new protocol allows non-upgraded clients to wawkrectly with
upgraded servers. But this approach does not work for séoveerver systems, because upgraded
servers cannot necessarily work correctly with non-upgdadnes.

To support mixed mode in server-to-server systems, Go&dle Gnutella [15], and the Internet
web [82] and mail [41] standards us&tensible protocolsin these systems, all nodes support a
common baseline protocol, and upgrades define extensidhg foaseline protocol. Nodes ignore
extensions they do not understand, so upgraded nodes muildao provide service with or
without the extensions. The problem with this approach a thcomplicates the system software
and does not support changes to the baseline protocol.

Research approaches to upgrading distributed systemsadjgravoid mixed mode by upgrad-
ing all the nodes that need to upgrade at the same (real calpgime. “Reconfigurable” distributed
systems [21, 28, 59, 66, 90] enforce synchrony by quiestiagnbdes that need to upgrade. “Trans-
actional” approaches [29, 102] serialize upgrades in tlygiesece of operations of a system, i.e.,
they prepare the new software on the nodes that need to ugifeeh cause those nodes do an
atomic switchoveto the new software. All these approaches stall when nodesirzvailable or
when there are communication problems, and each approagedfic to a particular distributed
object system.

Previous approaches try to minimize disruption by waitinglunodes quiesce [21,28,59,66,90]
or reach pre-defined reconfiguration points [29, 46, 48, 8459, 102] before upgrading them; and
while a node upgrades, calls to it are queued by the systeraselTapproaches assume transform
functions are fast. We decided on our approach becauseut$ simpler for the person defining the

upgrade (and therefore more likely that the node upgradeswdicute correctly), it allows clients to

18

www.manaraa.com

retry calls that fail because a node is upgrading (rather isaiting on blocked calls), and it allows
for lengthy transforms.

Our approach to state transformation is a departure fromique approaches [29, 48, 59] that
attempt to preserve a node’s volatile state. These appesaeiguire that the software implementor
provide routines to export a node’s volatile stat¢ itmport it from a canonical representation [56].
Since we assume volatile state may be lost at any time dued® fadure, it makes little sense to
complicate upgrades attempting to preserve it. Insteadkeep things simple: transform functions
operate only on persistent state, so no import or exportnmesitare necessary.

The idea of using adapters [50] to enable interoperatioroisnew. This approach arises not
only in upgradeable distributed systems [93, 102], but &lsobject-oriented databases [81, 97],
procedure-wise upgradeable programs [48], and federastibdted systems [45,78,88,94]. What
distinguishes our approach is the exceptional expresswmepof simulation objects and the criteria

we provide for reasoning about their correctness.

1.6 Outline

The thesis is organized as follows. Chapter 2 presents owlehfor automatic upgrades, and
Chapter 3 describes how to specify them. Chapters 4, 5, anst@s$ the three core components
of automatic upgrades: simulation objects, transform fions, and scheduling functions, respec-
tively. Chapter 7 describes Upstart, our prototype impletaton of the upgrade infrastructure,
and Chapter 8 evaluates its overhead on several applisati@mapter 9 discusses related work, and

Chapter 10 concludes.

19

www.manaraa.com

Chapter 2

Upgrades

This chapter presents an overview of our methodology amastructure for providing automatic

upgrades for distributed systems.

2.1 System Model

We model a distributed system as a collection of objects ¢baitmunicate via method calls. An
object has an identity, a type, and a statetypeidentifies a behavior for all objects of that type.
A specificationdescribes that behavior e.g., informally or in some preogisghematical notation.
A specification defines an abstract state for objects of the §hd defines how each method of the
type interacts with that state (in terms of method precdmt and postconditions). An object is an
instance of alassthat defines how the object implements its type.

Because nodes and the network may fail, objects are prefaresy remote method call to
fail. Systems based on remote procedure calls [99] or rermetiiod invocations [79] map easily
to this model. Extending the model to general messagefgasgstems is future work.

A portion of an object’s state may be persistent, e.g., it meyde on disk or on other nodes.
Objects are prepared for failure of their node, and suchifaiinay occur at any point in an object’s
computation (i.e., the object may not be shut down clearilyhen the node recovers, the object
reinitializes itself from the persistent portion of its t&a

The model allows for multiple objects per node, but to sifiypdiur discussion, we assume just
one object per node. Thus, each node runs a top-level clésseldss that implements its object.

When there are multiple objects per node, each object's ctes/ be upgraded independently.

20

www.manaraa.com

We assume class definitions are stored in well-known reqsst and define the full implemen-
tation of an object, including its subcomponents and libearModern software packaging schemes
like RPM [25] and APT [1] satisfy this assumption. fi@irent nodes are likely to run fierent

classes, e.g., clients run one class, while servers rumeanot

2.2 Upgrade Model

Theschemaof a system is a type-correct set of classes for the nodeg isytem, i.e., each class in
a schema relies only on the types of other classes in thatrech&n upgrade defines a new schema
and a mapping from the old (preceding) schema’s classestodiv schema’s classes. Some old
classes are simply carried forward into the new schema, thier @ld classes are replaced by new
classes; each such replacement itaas upgrade

We associate aersion numbemith each schema. The initial schema has version number
one (1). Each subsequent schema has the succeeding veusidoem Thus, an upgrade moves
the system from one version to the next.

A class upgrade defines how to replace instances of an olsl aliffs instances of a new class.
A class upgrade has six components, identifiedaddClassID, newClassID, TF, SF, pastSO, fu-
tureSQ. OldClassIDidentifies the class that is now obsolatewClassliDdentifies the class that is
to replace it.TF identifies aransform functiorthat generates an initial persistent state for the new
object from the persistent state of the old obj&itidentifies ascheduling functiohat tells a node
when it should upgradePastSOand futureSOidentify classes fosimulation objectghat enable
nodes to interoperate across versionsfutMreSOobject allows a node to support the new class’s
behavior before it upgrades. pastSQobject allows a node to support the old class’s behavior afte
it upgrades.

This design allows upgraded nodes to interoperate withupgraded nodes. In fact, a series of
simulation objects can enable nodes separated by sevesaingto interoperate, which is important
when upgrades happen slowly or when nodes may be discodniectldng periods. Our design is
modular: defining the components of a class upgrade reqainesnderstanding of just the old
and new classes, regardless of how many legacy versionsagdshow many versions separate
communicating nodes.

While each class upgrade has six components, many of thedmeaamitted for most upgrades.

A transform function is only needed when an upgrade changesan object organizes its persistent

21

www.manaraa.com

state. Simulation objects are only needed when an upgraateyel an object’s type, so depending
on the kind of change, the upgrade can omit the past SO oef@0ror both. Scheduling functions
cannot be omitted, but they are simple to implement, anddften possible to select a “stock” SF
from a library.

Our discussion assumes that a class upgrade causes allrnodex) the old class to switch to
the new class. We could, however, provide a filter that retsta class upgrade to only some nodes
belonging to the old class. Filters are useful to upgradeeaatlectively, e.g., to optimize those
nodes for their environment or hardware. Providing filtersion-trivial: they must have enough
expressive power to be useful, but processing them mustelay dipgrades. We do not explore
these issues in this thesis; this is an area of future work.

Class upgrades enable a system to replace existing clagbasew ones, and with filters, this
is enough to restructure a system in arbitrary ways. One lsanigtroduce a new class (that’s not a

replacement for an existing class) by initializing a nodéwat class directly.

2.3 How an Upgrade Happens

This section introduces our infrastructure for providing@natic upgrades and describes how an
upgrade happens.

The upgrade infrastructure is invisible to the system beipgraded. The infrastructure dissem-
inates information about upgrades to nodes in the systeusesanodes to upgrade their software
at appropriate times, and enables nodes runnifigrént versions to interoperate. The infrastruc-
ture consists of four kinds of components, as illustrateBigure 2-1: arupgrade serverper-node
upgrade layersasoftware distribution networkand arupgrade database

The upgrade servestores aconfigurationthat identifies the minimum active version, the the

initial schema (the classes for version 1), and the compsradrall the class upgrades:

configuration {minVersion initialSchema upgrade:)

initialSchema = classID+

upgrade = (version classUpgrade)

classUpgrade (oldClassID) newClassID TF, SF, pastSQ futureSQ

This is a simplified description of a configuration; we pragdéee full details in Appendix A.

22

www.manaraa.com

Node

current object

(unaware of the upgrade infrastructure)

Upgrade Layer

installs upgrades
and handles

cross-version calls Version i-1 Version i Version i+1 Version i+2
calls calls calls calls
A
A 4 \ 4
Upgrade Server Software Distribution Upgrade Database

serves configuration and
class upgrades to nodes

Network

serves cached copies

supports centralized
upgrade coordination

of class upgrades and monitoring

to reduce load on
the upgrade server

configuration

class upgrades

class upgrades node status records

Figure 2-1:The upgrade infrastructure. The components communicaeawetwork (bold line); arrows
indicate the direction of (possibly remote) method call$ie Tiode is running an instance of its class for
version i and SOs for versions i-&1, and k2.

The configuration is small: it simply identifies the compoatseof class upgrades—it does not
contain any code. The configuration can only be defined bystettiiparty, called thepgrader who
must have the appropriate credentials to modify the cordigum. Nodes are required to support
calls for any version fronminVersionup to the version of the latest upgrade: these areaattive
versions of the system. The upgrader defines a new versioddiggaanupgradeto the configura-
tion. The upgrader retires old versions by increasimgVersion Given a configuration, it is easy to
determine the schema for any version: start with the inditdlema and, for each successive version,
replace classes as defined by the class upgrades for thainvers

Our model allows multiple systems to coexist on the samefgeides. Each system has its own

configuration, and these configurations may be stored oretine ®r on dferent upgrade servers.

23

www.manaraa.com

node node

learns of learns of
. version 2 . version 3 .
version 1 é version 1 é version 1
object object object

node
upgrades to
version 2

version 2

-

object

version 1
is retired

version 2

object

-

Figure 2-2:How an upgrade happens, presented as a sequence of statesodéalarge arrows indicate
state transitions. In each state, the box is the current ctbpé the node, and the circles are SOs. Newer
versions are to the right. Objects may delegate calls asatdid by the small arrows. The node handles calls
for versions 1, 2, and 3; but only the “node upgrades to verdbtransition actually disrupts node service.

Each node in a system is runningcarrent version which is the version of the last upgrade
installed on that node (or the initial version, if the nods hat installed any upgrades). The node’s
current objectis an instance of itsurrent class this is the new class of the last upgrade that the
node installed (or its initial class).

A node’supgrade layerfabels outgoing calls made by an object with the object'sieer num-
ber: calls made by the current object are labeled with thesisazlirrent version number, and calls
made by an SO are labeled with the SO’s version number. Theadpdayer dispatches incoming
calls as follows. Calls made by clients running the nodetsesu version are handled by the node’s
current object Calls made by clients running newer versions than the nazei®nt version are
handled by future simulation objects. Calls made by cliemtsing older versions than the node’s
current version are handled by past simulation objects.

We now discuss how nodes discover and install new upgradgsteF2-2 depicts this process.

The upgrade layer discovers new versions by periodicallwrdoading the configuration (a
small file) from the upgrade server and checking whetherfinde an upgrade for the next version

after the node’s current version. If so, the upgrade layeckl whether the upgrade for the new

1Calls at the node’s current version may actually be handiedrimther object that implements the node’s current
typeaWewilldiscuss,the details,of dispatching in Chapter 4

24

www.manaraa.com

version includes a class upgrade whose old class matche®tieés current class. If so, the node
is afected by the upgrade. Otherwise, the node idfiected and immediately advances its version
number. We'll explain how a node that’s several versiongrmklcatches up” in Section 2.3.1.

The upgrade layer also discovers new versions by gossipkainies the version numbers
of incoming calls and periodically exchanges the newestiwernumber it has encountered with
other nodes. When the upgrade layer encounters a new vergiober, it downloads the latest
configuration and checks it as described above.

If a node is &ected by an upgrade, its upgrade layer fetches the clasadggomponents and
new class implementation from tlseftware distribution networkThe network enables the system
to disseminate upgrades rapidly to all the nodes in the systéhout overloading the upgrade
server. Reducing load is important, because each upgragénciade several large files, and there
may be thousands of nodes attempting to download theseifitedt@neously.

Once the upgrade layer has downloaded the components odsawghgrade, it verifies the up-
grade’s authenticity (by checking digital signatures om tbmponents) and then installs the class
upgrade’s future SO, which lets the node support (somed aathe new version. The upgrade layer
dispatches incoming calls labeled with the new version &ftiure SO. This SO can delegate to
(i.e., call methods of) the object for the previous versmhjch may be another SO or may be the
current object. The node may install additional future S@ddter upgrades, so there could be a
chain of SOs, each member of which implements the type ofptgade’s new class. The chain
ends at the node’s current object.

After installing the SO, the upgrade layer invokes the clgggade’s scheduling function, which
runs in parallel with the node’s current object, determiwben the node should upgrade, and signals
the upgrade layer at that time. The scheduling function ntagss a centralizegpgrade database
to coordinate the upgrade schedule with other nodes andatdiehuman operators to monitor and
control upgrade progress.

In response to the scheduling signal, the upgrade layes stawtn the node (the current object
and all the SOs). The upgrade layer then installs the new ataglementation and runs the trans-
form function to convert the node’s persistent state to #pmeasentation required by new class. The
upgrade layer then discards the future SO and installs thieS@, which implements the old type.
The upgrade layer then causes the node to start running eotafjthe new class, which recovers
from the newly-transformed persistent state. Finally,upgrade layer notifies the upgrade database

that its node is running the new version.

25

www.manaraa.com

Like future SOs, past SOs can implement their calls by délegabut they delegate to the
object of the next newer version rather than the previous étieer several upgrades, there could
be a chain of past SOs, and again the chain ends at the nodeatonbject.

Once all of the nodes in the system have upgraded, the upgcaderetire the old version
by increasing the minimum active version number in the camétion. When nodes learn of this
update, they discard their past SOs for any versions lesstttminimum active version. This
can be done lazily, since keeping past SOs around doesfimat ¢he behavior or performance
of later versions. If a version is retired before all the nodeve upgraded beyond that version,
nodes running the retired or earlier versions will be unableommunicate with nodes running
later versions. This problem is easy to avoid, since theagbgrcan query the upgrade database to

determine whether any nodes are still running old versions.

2.3.1 Catching Up

If a node is several versions behind the latest version, 1t haave several upgrades pending. We
want the node to start supporting these newer versions asasopossible, because other nodes may
have upgraded and, if so, will rely on the newer versions.rdfoee, we allow a node to download
and install the future SOs for all its pending upgrades leefiostarts the scheduling function for its
next upgrade.

To determine which upgrades are pending, the node must kriehwlass it will be running at
each future version. The algorithm is as follows: the nodeswith its current classand current
versionv. The node checks the configuration for an upgrade in vergierl that replaces class
with some new clasg’. If such an upgrade exists, the node downloads and instalfuture SO
for that upgrade, which allows the node to simulate the tyipe.0oThe node repeats this process,
now assuming that its current versionvis- 1 and its current class s (if there was an upgrade)
or ¢ (otherwise). The node continues this process until thezenarnewer versions defined in the

configuration.

2.4 Upgrade Components

There are three kinds of upgrade components (beside cléisitidas): simulation objects, trans-
form functions, and scheduling functions. This sectiomdidtices each in turn; Chapters 4, 5, and 6

discuss each in detalil.

26

www.manaraa.com

2.4.1 Simulation Objects

Simulation objects (SOs) are adapters defined by the upgtadmable communication between
nodes running dierent versions. Simulation is necessary when nodes upgsylechronously,
since nodes running older versions may make calls on nodesng newer versions, and vice
versa. Itis important to enable simulation in both thesedlions, because otherwise a slow upgrade
can partition upgraded nodes from non-upgraded ones (saltebetween those nodes will fail).
Simulation also simplifies software development by allayvimplementors to write their software
as if every node in the system were running classes in the sah&ma.

SOs are wrappers: they delegate (most of) their behaviothermbjects. This means that
SOs are simpler to implement than full class implementatidiut they are also slower than full
implementations and may not be able to implement the ful fffe., SOs may have to reject calls
that they cannot implement correctly—we discuss when thpgpkns in Chapters 3 and 4). If a new
version does not admit good simulation, the upgrader magecthe upgrade to happen as quickly
as possible (and cause SOs to reject all calls), at the exdsrupting service while the upgrade
happens.

At a given time, a node may contain a chain of past SOs and a oh&iiture SOs, as depicted
in Figure 2-1. An SO may call methods only on the next objetihéchain; it is unaware of whether
the next object is the current object or another SO. An SO eae fits own state; this means SOs
are more powerful than “translators” used in previous apphes [48,81,93,97,102].

When a node receives a call, its upgrade layer dispatchesath® the object that implements
the version indicated in that call (or rejects the call iifor an inactive version). The infrastructure
ensures that an object exists for every active version byhycally installing future SOs for new
versions and by keeping past SOs until their versions airedet

Chapter 3 presents a model for nodes that support multiplestgimultaneously and explains
how to reason about computations on such nodes. Chaptecuysdes various techniques for real-

izing this model using simulation objects.

2.4.2 Transform Functions

Transform functions (TFs) are procedures defined by theagmgrto convert a node’s persistent
state from the representation required by its current daghe representation required by a new

class. We allow a node to simulate the new type before the ii$; go the TF must take into account

27

www.manaraa.com

Version i-1 Version i Version i+1 Version i+2

current
object
state

future SO
state

future SO
state

Before i+1 past SO
upgrade state

Transform
Function

l

. current
After i+1

upgrade

future SO
state

past SO

object
state

state

Version i-1 Version i Version i+1 Version i+2

Figure 2-3:State transform for a node upgrade from version i+t i

the persistent state of the future SO, as illustrated inrf€i@43. The job of the TF is to produce a
state for the new object whose value reflects the abstratet gtahe future SO at the moment the
TF runs. The TF must also produce a state for the past SO wiahse reflects the abstract state of
the old object at the moment the TF runs.

Chapter 5 discusses transform functions and recoveryyding recovery from failures that

occur while a TF is running.

2.4.3 Scheduling Functions

Scheduling functions (SFs) are procedures defined by theadpgto tell nodes when to upgrade.
SFs run on the nodes themselves, which lets them responklygtocchanging conditions—e.g., to
avoid upgrading a replica if another one fails—and decidemto upgrade even if the network is
slow or unavailable.

Scheduling functions control the order and rate of node aghegs, so they carffact a system'’s
availability, fault-tolerance, and performance duringugngrade. For example, a schedule that up-
grades nodes as quickly as possible may cause severe sdisrigation, but this may be appropriate
if the upgrade closes a dangerous security hole or occumglaft-peak hours. On the other hand,
a gradual schedule can minimize service disruption, bt itthtreases the period of time during
which nodes running elierent version must interoperate.

Many scheduling functions require information about thdemon which they run or about the
system as a whole. For example, an SF may need to know thenttime and load of a node to

avoid disrupting client activity. Or the SF might check wiltentral database to determine whether

28

www.manaraa.com

its node is allowed to upgrade. Our goal is to give the upgradenuch flexibility as possible in
defining upgrade schedules.
We discuss scheduling functions in more detail in Chaptardiiding guidelines for designing

good scheduling functions and several examples.

2.5 Example

We present an example upgrade to demonstrate the featuoess wfodel. The example system is a
distributed file system, like SFS [76] or AFS [61]. The systeas two classes of nodes: clients and
servers. Servers store and control access to files. Cliget§ilas by interacting with servers.

In version 1 of our system, servers control access to filagudnix-style permissions. That is,
a server keeps a set of nine bi@, Ow, Ox, Gr, Gw, Gx, Wr, Ww, WX, for each file that indicates
whether the file owner@), file group G), and the rest of the worldX) can read), write (w), or
execute X) the file. Permissions are part of a server's persisteng;sthey are stored in metadata
blocks in the file system.

Unix-style permissions are adequate for small collabeeagettings, but they are not expressive
enough for larger systems. For example, permissions catemgnate a file as writable for one
group of users, read-only for another group, and inacckstitthe rest.

To provide greater control over permissions, file systekes AFS [61] and SFSACL [64] keep
an access control list for each file. That is, each file has gpmggdrom user or group names to a
set of permissions.

In version 2 of our system, servers keep an access contrébtisach file. Access control lists
are part of a server’s persistent state; each ACL is storélgeiffirst 512 bytes of the file it protects.
This change does noffact how clients use files, because the server hides ACLs fliamts, i.e.,
when a client reads the first 512 bytes of a file, it sees thesfilata, not its ACL. However, this
change doesfiect how clients manage file permissions, so the protocoldmtvelients and servers
must change.

Thus, the upgrade from version 1 to version 2 consists of tasscupgrades: the first changes
the file server implementation frofermServer (a server that uses permissions)AcdServer (a
server that uses access control lists), and the second ehamg client implementation to support

management of access control lists.

29

www.manaraa.com

2.5.1 Model

We do not model the clients, because they have no methods.
PermServer has the following methods (the client’s identity is an inailparameter to all server

methods):

getPerms(f) Returns the owner, group, and permission bits forffile

setPerms(f, owner, group, bits) Sets the owner, group, and permission bits for filer throws

NoAccess if the client is notf’s (current) owner.

canAccess(f, mode) Returns trueft the client can access filein mode mode according tof's

permissions.

We omit the methods for creating, reading, writing, and remg files from this model because
they are unfiected by our example upgrade (these methodscasAccess to check whether the
client is allowed to do the requested operation).

AclServer has the following methods:

getACL(f) Returns the access control list for file

setACL(f, acl) Sets the access control list for fileor throwsNoAccess if f's ACL does not grant

the client permission to modify the ACL.

canAccess(f, mode) Returns trueft the client can access filein mode mode according tof's

access control list.

The rest of the server's methods (those for manipulating)fiee unchanged.

Now we consider the components of the two class upgrades.

2.5.2 Scheduling Functions

We have to define scheduling functions for both the clientsarger class upgrades.

We want to avoid disrupting service, so the client schegufimction should attempt to avoid
signaling the upgrade layer while the user is active. The&Fdo this by signaling late at night or
while the client has had little activity for a long time. Altetely, the SF could periodically display
a dialog box to the user requesting that the client be allaweaghgrade.

The server scheduling function also needs to avoid disrgpgervice, but if there is just one

server-the-best.the.Sk.can do is schedule the server upgtagle tvere is low client activity.

30

www.manaraa.com

However, if servers are replicated, we can useliing upgrade[16, 33, 102] that upgrades just one
replica at a time. In this case, the SF signals the upgrade Valyen all other replicas with lower IP
addresses have upgraded. Since IP addresses define adetaborservers, this SF implements a

rolling upgrade.

2.5.3 Simulation Objects

The server upgrade changes the server's type. Our schgdulirctions allow clients to upgrade
before servers or vice versa, so we must use simulation tsligenable upgraded clients to use non-
upgraded servers and non-upgraded clients to use upgradexis This means we need two SOs: a
future SO that implementsclServer while the node is running thieermServer implementation and
a past SO that implemenkegrmServer while the node is running th&clServer implementation.

The challenge in defining these SOs is that some ACLs canmetjyessed as permissions. We

explain how to reason about this challenge and define the i58eadtion 3.5.

2.5.4 Transform Functions

The client class upgrade does not change the client’s pamsistate, so it requires no transform
function. However, the server class upgrade requires a Tdetwert the permissions for each file
to access control lists. Permissions are stored in metduliatis in the file system, whereas ACLs
are stored in the first 512 bytes of the files themselves [64].

Therefore, the TF needs to change the representation of &eon the server. For each file
in the file system, the TF copies the file's data to scratchespaads the file’s permissions from
the metadata blocks, converts these to an ACL (as describ8ddtion 3.5), writes the ACL to the
beginning of the file, then writes the file's data after the AGle have implemented this TF, as
described in Section 8.2.2.

This TF is slow, because it needs to read and write each fitas wvice (to the scratch space
and back to the file). This takes a long time for large file aysteand the server is unavailable while
the TF is running. One way to reduce this downtime is to allbes$erver to recover immediately
and run the TF incrementally, e.g., transform each file oslif B accessed. Supporting incremental

transforms is future work; we discuss how to support themaatien 10.3.1.

31

www.manaraa.com

Chapter 3
Specifying Upgrades

Our approach allows nodes to upgrade asynchronously ammbgenunicate, even though upgrades
may make incompatible changes. We accomplish this by augmgenodes to support multiple
types simultaneously. This enables a node’s non-upgralikxtto use the node’s pre-upgrade
type and enables upgraded clients to use the node’s postdetype.

This chapter explains how to specify the relationship betwa node’s pre-upgrade and post-
upgrade types as part of defining an upgrade. This speaificgtiides the design of the simulation
objects and transform function for an upgrade. The spetificalso tells clients what changes to
expect when they upgrade from one version to the next analsviribom using the pre-upgrade to
the post-upgrade type.

The definitions in this chapter are informal, but we aim farthto be precise enough to enable

developers to reason about programs and upgrades. Foimgadiar model is future work.

3.1 Specifications

There are various ways of defining specifications; in thisigjeve use informal specifications in

therequires/ gffectsstyle [72] to define the preconditions and postconditiona ofethod.

e Therequiresclause defines constraints on the arguments to a method arstate of the

object before the method runs.

e The effectsclause describes the behavior of the method for all inputsruied out by the
requiresclause: the outputs it produces, the exceptions it throwd,the modifications it

makes to its inputs and to the state of the object.

32

www.manaraa.com

class IntSet An IntSet is a mutable, unbounded set of integers

IntSet() gffects: this = {}
void insert(x) gffects: thigoest = thispre U {X}
void delete(x) gffects: xe thisye = thisyest = thisye — {X],

else throws NoSuchElementException
boolean contains(x) gffects: returns > this

Figure 3-1:Specification fointSet

Figure 3-1 gives a specification for typetSet (a set of integers) in this style. We uliEsye to
denote the pre state of the object ahib,s: to denote the post state. All examples of method

specifications in this thesis are total, so none heegjairesclause.

3.1.1 Failures

Each method call terminates either normally or by throwingeaception. Furthermore, we assume
that any call can terminate by throwing a special exceptia indicatedailure. Such termination
happens, e.g., if a remote method call fails because thettamfe is unreachable. Failures are
unpredictable can happen at any time. This model is commaimstributed object systems: Java
RMI [79] allows any remote method invocation to fail by thiiogy RemoteException, and Sun
RPC [99] allows any remote procedure call to fail with errodes indicating the unavailability of
a server or individual procedures.

We extend the notion of failure to include cases when a nodeasle to handle a call correctly
because the version of the caller istdrent from that of the receiver. These failures appear to the
caller as node failures, so the caller may try an alternateeror a workaround, or it may wait and
try the call again later. Of course, such failures and delligaupt service, so we want to avoid

causing calls to fail when possible.

3.1.2 Subtypes

We review behavioral subtyping [73] briefly here.
One type is aubtypeof another if objects of the subtype can be substituted fgeatb of the
supertype without fiecting the behavior of callers that expect the supertypbtypes that satisfy

this substitution principlesupport three properties (as stated in [72]):

33

www.manaraa.com

Signature Rule The subtype objects must have all the methods of the suger@yy the signatures
of the subtype methods must bempatible(contravariant argument types, covariant return

and exception types) with the signatures of the correspgnslipertype methods.

Methods Rule Calls of subtype methods must “behave like” calls to theesponding supertype
methods, i.e., subtype methods may weaken the preconditidstrengthen the postcondition

of the corresponding supertype methods.

Properties Rule The subtype must preserve invariants and history propettiat can be proved

about supertype objects.

Invariants are “properties true of all states” of an objectg history properties are “properties true
of all sequences of states” of an object [73]. History préipsrdefine how an object evolves over
time, and they are derived from the specification of the digdgpe. For example, if we remove
the delete method fromintSet then we can derive the property that later sets are alwgysrsets
of earlier ones (regardless of the intervening method callients can rely on this property when
reasoning about programs that use this type, e.g., they kimatwnce an element is in a set, it will

always be in the set.

3.2 Class Upgrades

A class upgrade concerns two classesplainclassand anew classand causes each instance of the
old class to be replaced by an instance of the new class. thanol new classes each implement
their respective types.

We can classify class upgrades based on how the old and new d&yp related. There are four

possibilities:

Same type The old and new types are the same.
Subtype The new type is a subtype of the old type.
Supertype The new type is a supertype of the old type.
Unrelated The old and new types are incomparable.

We say an upgrade isompatibleif the new type is the same type or a subtype of the old type;

otherwise it isncompatible

34

www.manaraa.com

Same type upgrades are likely to be common; they correspopdtthes that change internal
algorithms of nodes withoutfigecting their types. Subtype upgrades are also likely to lpencon;
they correspond to minor releases that introduce new festutnrelated upgrades are likely to
be the next most common; they correspond to major, incotmasoftware changes. Supertype

upgrades are probably rare, as they remove behaviors viiiiouiding replacements.

3.3 Requirements

At a given time, a node may support multiple types. The noddeéments itcurrent typeusing its
current object. The node may also simulate several old tigfedasses that it upgraded from in the
past) and several new types (of classes that it will upgradie the future). But clients do not know
whether they are using the current type or a simulated ores; shmply believe they are using an
object of the type they expect.

Our goal is for upgrades to beansparentto clients of all versions [78, 94], i.e., clients should
not notice when a node upgrades and changes its current fymthermore, we want to enable
clients to reason about their programs, not only when theyraaking calls to nodes that are running
their own version, but also when they are making calls to sdtiat are running newer or older
versions than their own, when they are interacting with otliients that are using the same node
via a diferent version, and when the client itself upgrades and resuming a node it was using
before it upgraded. Essentially, we want nodes to provideicethat makes sense to clients, and
we want this service to make sense across upgrades of nodietieats.

This section defines requirements for how upgrades must firedeso that clients can reason
about the behavior of nodes that support multiple typess@&equirements provide amtuition for
what an upgrade definition must provide; we will explain irct&mn 3.4 precisely what additional
information is needed.

We think of a node that implements multiple types as havinglgeact for each type. (The node
may not actually implement each type with a separate objEnt; a node actually implements its
types is the subject of Chapter 4.) We can refer to these @bigcversion, e.g.Q» is the object
that implements the node’s type for version 2. When we areudising a specific class upgrade,
Oolq is the object that implements tlodd type(Toq, the type of the class replaced by that upgrade),
andOpey is the object that implements tmew type(Thew the type of the replacement class). We

sometimes refer t@®qy andO,ew as theold objectand thenew objectrespectively.

35

www.manaraa.com

Clearly, we require the following:
Specification Requirement The object for each version must implement its type.

This ensures that a client’s call behaves as expected bygltbat.

However, we also need to define thiéeets ofinterleaving Interleaving occurs when filerent
clients running diierent versions interact with the same node. For exampldl to@anode’s current
type (made by a client running the node’s current versiony befollowed by a call to a past type
(made by a client running a past version), which may be fadidwy a call to a future type, and so
on.

To be more precise about what we mean by interleaving, wedntre the notion of theompu-
tation at a node. A computation is a seriesesfents each event is either the execution of a method
on some type implemented by the node, the addition of a neg; tiye removal of an old type, or
a node upgrade (which changes the current type). For now sigrasthe events in a computation
occur one-at-a-time in some serial order; we discuss hawh#ppens in Section 4.6.

By interleaving, we mean computations like:

O;.m(args) O;.m(args) [version 2 introduced];
O;.m(args) O,.p(args) [node upgrades from 1 to 2];
O;.m(args) Oy.p(args) [version 1 retired];

Oy.p(args) Oz.p(args)

where between the introduction of version 2 and the nodeagggand between the node upgrade
and the retirement of version 1 there can be an arbitraryesampiof calls tdD; andO,. A node
may support more than two types simultaneously, in whicle cadls to all of the supported types
can be interleaved.

The problem we face is how to make sense of what is happenisgdn computations. The
objectsO; and O, (and so on) are not independent: they share a single idestitgalls made to
one must reflect thefiects of calls made to the others. For example, when a nodemspits two
versions of a file system protocol simultaneously, modiiicet to a file made by one client (using
one protocol version) must be visible to other clients (gghe other protocol version).

In general, an upgrade muspecifythe dfect on the old objectdq) of calls to the new ob-
ject (Onew), and vice versa. For example, data written to a file ®@ja,, must be visible when the

file is later read viaDqg; the specification of the upgrade frofyg to Thew Must specify exactly

36

www.manaraa.com

what the #ect of a modification t®, ey iS 0NOg|g, and vice versa. We explain how to specify these
effects in Section 3.4.

We require the following:

Sequence RequirementEach event in the computation at a node must reflect ffexts of all

earlier events in the computation at that node in the ordsyr titcurred.

In the simple case of an object with just two types, this resjunent means method calls to one type
must reflect the fects of calls made via the other, and vice versa. If the methad observer, its
return value must reflect all earlier modifications made vilhes type. If the method is a mutator,
its effects must be visible to later observations made via eithpe.tyVhen the node upgrades and
its current type changes, observations made via eitherdftpethe upgrade must reflect thiezts

of all modifications made via either type before the upgradie. explain how upgrade definitions
guarantee the sequence requirement in general in Sec@on 3.

The two requirements stated above—the specification rexpeint and the sequence requirement—
can be overconstraining: it may not be possible to satiséyntivoth for all possible computations
(we’ll explain why in Sections 3.4.5 and 3.6). When this hepgy we resolve the problem loljs-
allowing calls. The system causes any disallowed call to fail (icethtow a failure exception). We
meet the requirements above essentially by ruling out tadiswould otherwise cause problems.

Disallowing takes advantage of the fact that any call can $ai clients won't be surprised by
this. We can disallow whole methods, in which case any cathtse methods fail, or we can
disallow at a finer granularity, e.g., based on the argumefraiscall.

We require that calls to the current type are never disaltbwe
Disallow Constraint Calls to the current type must not be disallowed.

The rationale for this constraint is that the current typeves the “real behavior” of the node, so
it should not be fiected by the node’s support for other versions. Given thistaint, we want to

disallow as few calls as possible so as to provide the besilgesservice to all clients.

3.4 Defining Upgrades

This section explains what is needed to define an upgrade.
An upgrade deals with two objects—the new ofgd,) and the old one@q4). The upgrade

definition willinclude aninvariant, 1(Ogq, Onew), that relates the old and new objects throughout

37

www.manaraa.com

the computation, i.e., whe@e is introduced, after each method call @,y or Onew, and until
Ouiq is retired. For all but same-type upgrades, the upgradeitiefirwill also include amapping
function (MF)that defines an initial state f@pe, given the state 00y whenTew is introduced.
Finally, the definitions of unrelated-type upgrades musb akplicitly specify the &ects of calls to
Onew 0N Ogig (and vice versa); these specifications are given in the fdrathadow methods

The following sections explain how to define each of the fomdgk of upgrades: same type,

subtype, supertype, and unrelated.

3.4.1 Same Type

If the new type is the same as the old one, no additional irdition is required for the upgrade:
Oolg andOpew behave like a single object. We want the following invaritmhold throughout the

computation:

Oold = Onew (3-1)

where in this contexOgg and Oney refer to the abstract states of those objects. To satis$y thi
invariant, the &ect of a method call on one of the objects (eQen) Must be reflected on the other
(e.g.,0q1g) just as defined by the specification of that method.

For example, consider an upgrade that replaces an old ingpitation ofintSet (Figure 3-1,
page 33) with a new one (e.g., because the new implementatimore dficient). Our invariant
means that if a client call®q.insert(x), a subsequent cal,encontains(x) will return true (pro-

vided neither call fails and no intervening calls remaye

3.4.2 Subtype

If the new type is a subtype of the old one, we want the follgnmvariant to hold:

Oold = AF(OneW) (3-2)

whereAF is the abstraction function that maps the abstract stateeasuibtype to that of the super-
type [73]. The invariant must be defined this way becauseeétibtype relationship: when clients
of Ogiq upgrade and start usimnew, they expect to see values that are consistent with what they

saw before they upgraded.

38

www.manaraa.com

All that is needed in the upgrade (besides the specificabbiize two types) is one additional

piece of information, thenapping function (MF)

MF : Ogig — Onew (3.3)

Given an object of the old type, MF defines a related objechefitew type. The mapping function
is used to define the state of the new object when it is firsbdhiced. It must establish our invariant,

i.e., it must respect the abstraction function:

Ood = AF(MF(Ooiq)) (3.4)

Method calls to either object must preserve the invariahts means thefect of a call made via
the old object (the supertype) is reflected on the new objmirding to the subtype’s specification
of that method. By the definition of a subtype, this preseowgsnvariant. The fiect of a call made
via the new object (the subtype) is reflected on the old olijgcpplying the method to the new
object then applying the abstraction function. The resulhé new value for the old object, and this
clearly satisfies our invariant.

Since the new object may be introduced at an arbitrary tineepauld like to get the same result
regardless of when we run the mapping function. This is ntwiraatic—we give an example below

of how it might not be the case—so the mapping function mustdiimed to satisfy this property:

MF(Ooig-m(args)) = MF(Ogig).m(args) (3.5)

Here,mis a method ofTqg, and Ogg.m(args)is the state of0qy after runningm(args) (not the
return value oim(args). This property ensures clients cannot tell when a nodedhires the new
object. While this is not strictly necessary, we believesialways possible to satisfy this property

for subtype upgrades. Proving this conjecture is futurekwor

Example: ReplacelntSet with ColorSet

Consider an upgrade that replat¢etSet (Figure 3-1, page 33) witolorSet (Figure 3-2, page 41).
This example is analogous to an upgrade that adds a new prapdiies in a file system or adds a

new column to a table in a database.

39

www.manaraa.com

ColorSet (Onew) is a subtype ofntSet (Og)g) under this abstraction function:

Oold = AF(Onew) = { X|(X,C) € Onew} (3.6)

The mapping function works in the opposite direction. Itdfies an initial ColorSet given an

IntSet:

Onew = MF(Ogig) = { (X, blue)|x € Ooig } (3.7)

This MF specifies that the initialolorSet has the same set of integers asltitSet, and the initial
color for each element is blue. This choice of color is admitr we could have assigned dfdrent
color to each integer, or we could have assigned random g;atmrwe could have used a special
value that indicates that the color is undefined. Any of tlesdisfies our invariant, because applying
the abstraction function to an@olorSet they produce yields the originahtSet. But using blue
means the MF satisfies property (3.5) (becaDstorSet.insert adds new elements with the color
blue), so clients cannot tell which elements were inserted the MF ran. Any other MF definition
would not satisfy (3.5).

After running anintSet method, theColorSet post-state is the result of runnir@plorSet’s ver-
sion of that method. For example, if a client cdllgg.insert(x), a subsequent callen.getColor(x)
will return blue (assuming neither call fails and no intarvegy call changes the color .

After running aColorSet method, thantSet post-state is the result of applying the abstraction
function to theColorSet post-state. For example, if a client callyeninsertColor(x, green), a
subsequent calDgyg.contains(x) will return true (assuming neither call fails and no intarivey call

removes).

3.4.3 Supertype

The new type is a supertype of the old one, so we want the ewéithe previous invariant:

AF(Oold) = Onew (3.8)

As in the subtype case, the upgrade must provide the spéicifisdor the two types and a mapping
function. The mapping function maps the old object to the aed must satisfy our invariant, so
we must useMF = AF, i.e., the mapping function is just the abstraction funttio

40

www.manaraa.com

class ColorSet A ColorSet is a mutable, unbounded set of colored integers;
integers are unique{x, c) € this A (x,c’) ethis = ¢ = ¢

ColorSet() gffects: this = {}

void insert(x) gffects: —3(x,C) € thisye = thisest = thisyre U {(X, blue)}

void delete(x) gffects: I (x, ¢) € thisye = thisyest = thisyre — {(X, C)},
else throws NoSuchElementException

boolean contains(x) gffects: returnsd (x, ¢) € this

void insertColor(x, c) gffects:~3 (X, ') € thisye = thisyest = thispre U {(X, C)}

color getColor(x) gffects: 3 (x, ¢) € thisye = returns c,

else throws NoSuchElementException

Figure 3-2:Specification folColorSet

The dfects of methods are symmetric with the subtype case. Tieeteof a call on the old
object (the subtype) is reflected on the new object by apglitre method to the old object then
applying the abstraction function. Théexct of a call made via the new object (the supertype) is
reflected on the old object according to the subtype’s spedtifin of that method. These definitions
mean the MF automatically satisfies property (3.5).

As an example, consider an upgrade that repl@srSet with IntSet. This is symmetric with
the example in Section 3.4.2, except in this case, the mgppirction is the same as the abstraction

function (3.6).

3.4.4 Unrelated Type

In this case, there is no subtype relationship between tbeytpes. Instead, the upgrader needs to
define their relationship.

The first step in defining the relationship betweEgy and Thew is to define the invariant,
I(Oolds Onew), that relates the old and new objects throughout the coatipat i.e., assuming
I (Oold, Onew) holds when a method on one of the objects std(t3gg, Onew) also holds when the
method returns. The invariant is likely to be obvious to thgnader. For example, ©yq andOnew
are file systems, an obvious invariant is that the new and tddsjistems contain the same files
(although some file properties mayfidir).

The invariant must béotal, i.e., for each legal stai®ne, Of Thew, there exists some legal state

Oolg Of Toig such that (Ogig, Onew) holds (and vice versa).

41

www.manaraa.com

The second step is to define the mapping function; it mustbksitathe invariant, i.e.,
I(Ooid, MF(Ogig)). For example, the MF from the old file system to the new onetnmitialize
the new file system with all of the old files, and it must alsdiatize any new file properties to
default values.

| tells us something about what we expect from method callspahticular, it constrains the
behavior of mutators (methods that modify the state of theap For example, it wouldn't be
correct to add a file t®,ey but not toOgy. But | doesn't tell us exactly whatfiect a mutator on
Onew should have o1®Dgq, or vice versa. This information is given Isjhhadow methods

For each mutatoFq.m, we specify a related metho@izew.shadowT g$m(reads as “the shadow
of Toiw's methodm”). The specification off ,ew.ShadowTig$m explains the fect onOpey Of run-
ning Toig.m. Similarly, for each mutatol ,ew.p, we specify a related methotlgg.shadow Fen3p,
that explains theféect onOgg of running Trew.p. (We are assuming here that shadow methods never
introduce naming conflicts; clearly other naming convemtiocould be used instead.)

No shadow methods are required for observers; an obseflectethe abstract state of its object
at the moment it runs. And shadow methods are often obviags, fer mutators that both types
inherit from a common supertype. Therefore, defining shadmthods need not be very onerous.

We require that a shadow method be able to run whenever thesponding real method can
run. This means the precondition for a shadow method mudtwbénever the precondition for the

corresponding real method holds:

1 (Oold> Onew) A Prem(Oold) = PreshadowT sm(Cnew) (3.9)

1 (Oold> Onew) A Prep(Onew) = PreshadowTesp(Cold) (3.10)

All examples of method specifications in this thesis ard tstathey meet this condition trivially.

Shadow methods must preserve the invariant:

1(Ooid» Onew) = 1(Ooig.m(args), Onew-shadowFg$m(args)) (3.11)

[(Ooid: Onew) = 1(Oglg.shadowhen$p(args), Onew-p(args)) (3.12)

This enables us to prove that our invariant holds throughioetcomputation of a node that im-

plements the old and new types simultaneously. The proof isdiuction: the mapping function

42

www.manaraa.com

establishes the base case (when the new type is introdusetishadow methods give us the induc-
tive step (on each mutation).

Just as in the subtype case, we would like to get the samd regatdless of when we run the
mapping function. We cannot use property (3.5), becaysgmay not have all off 5i4’s methods.

Instead, we define this property in terms of the shadowk,gfs methods:

MF(Ogg.m(argy) = MF(Ogg).shadowTigSm(args) (3.13)

This means clients cannot tell when the new object was ioted. This is not strictly necessary,
and in some cases satisfying this property is impractical, &henT,ewS history properties are
stronger than those df,q (we present an example of this in Section 3.4.5). Therefame|eave
this property as a guideline for designing MFs.

We can model the other three kinds of upgrades—same typ&mjland supertype—using
shadow methods. In a same-type upgrade, the shadow of aomistaist the mutator itself. In a
subtype upgrade, the shadow of a supertype mutator on thgpsuis the mutator as specified for
the subtype, i.eTnew.ShadowTig$m = TrewM. However, the shadow of a subtype mutator on the
supertype is not the supertype method; it's the subtype odefhs &ected on the supertype), i.e.,
Ooig-shadowTFewdp(args = AF(Onew-p(args). The supertype upgrade case is symmetric with the
subtype upgrade case.

We now consider examples of how to define invariants, mapipinctions, and shadow methods

for unrelated-type upgrades.

Example: ReplaceColorSet with FlavorSet

This upgrade replaces objects of cl&&sorSet (Figure 3-2, page 41) with objects of claBk-

vorSet (Figure 3-3, page 44). This example is analogous to an upgfat changes a property of

files in a file system, such as one that changes permissiotoltsess control lists (Section 2.5).
We begin by choosing an invariahtthat we want to hold for eacfiolorSet (Oy4) and Fla-

vorSet (Onew):

{X|(X,C) € Ooig} = {XI(XF) € Onew} (3.14)

43

www.manaraa.com

class FlavorSet A FlavorSetis a mutable, unbounded set of flavored integers;
integers are uniquex, f) e this A(x, f’) ethis = f = f’

FlavorSet() gffects: this = {}
void insert(x) gffects: —A (X, f) € thisye = thisyest = thisye U {(X, grape}
void delete(x) gffects: A (x, f) € thisyre = thisyest = thispre — {(X,)},

else throws NoSuchElementException
boolean contains(x) gffects: returnsd (x, f) € this
void insertFlavor(x, f) gffects:—3 (X, f’) € thispyre = thisyest = thisye U {(X, f)}
flavor getFlavor(x) gffects: 3 (x, f) € thisye = returns f,

else throws NoSuchElementException

Figure 3-3:Specification foiFlavorSet

This says that the set of integers@g;qy andOpey are the same. Sind@olorSet andFlavorSet are
both subtypes omtSet, another way of putting this is th&y and Onew always map to the same
IntSet.

We could have chosen a stronger invariant, e.g., one thas g@prs to flavors:

(x,blue) € Ogig & (X, grape € Onew
(x,green € Ogq < (X lime) € Onew

(3.15)

Whereas (3.14) treats colors and flavors as independeneipieg (3.15) says these properties are
related.

We could also have chosen a weaker invariant than (3.14):

{X[{(X,c) € Ogig} < {XI(X f) € Onew} (3.16)

This invariant allowsOpey t0 contain more elements th&dy,y. Weaker invariants give us more
flexibility in defining shadow methods, so they typically vég fewer disallowed methods than

stronger ones (as we'll discuss in Section 3.4.5).

44

www.manaraa.com

Given the invariant, the next step is to define a mapping fanctor invariant (3.14), we might

have:

Onew = MF(Ogig) = {(Xgrape | x € O }

As required, this MF establishés

Now we can define the shadow methods:

void ColorSet.shadowFlavorSet$insert(x)

gffects: —3 (X, C) € thisye = thisyest = thisyre U {(X, blue)}
void ColorSet.shadowFlavorSet$insertFlavor(x, f)

gffects: 3 (x,C) € thisye = thisyest = thisyre U {(X, blue)}
void ColorSet.shadowFlavorSet$delete(x)

gffects: I (x, ¢) € thisyre = thisyest = thisyre — {(X, C)},

else throws NoSuchElementException

void FlavorSet.shadowColorSet$insert(x)

gffects: —A (X, f) € thisyre = thisyest = thisye U {(X, grape}
void FlavorSet.shadowColorSet$insertColor(x, c)

gffects: —3A (X, f) € thisye = thisyest = thisye U {(X, grape)
void FlavorSet.shadowColorSet$delete(x)

gffects:A(x, f) € thisyre = thisyest = thispye — {(X,)},

else throws NoSuchElementException

(3.17)

These definitions satisfiyand, along with the MF, satisfy property (3.13). In fact, #edows for

insert anddelete have the same specifications as the real methods with the sames, i.e., the

specification forColorSet.shadowFlavorSet$insert is the same as that f@olorSet.insert, and so

on. This is becaus@olorSet andFlavorSet both inherit the mutatonssert anddelete from IntSet,

so it is particularly easy to define these shadow methods.

Suppose we had instead defined our MF as:

Onew = MF(Ogig) = {(x,cherry)| X € Ogiq }

45

(3.18)

www.manaraa.com

Now, our upgrade specification no longer satisfies prop&/3):

MF(Ogig.insert(x)) # MF(Oqlq).shadowFlavorSet$insert(x) (3.19)

because in the first casehas flavor “cherry,” while in the second casehas flavor “grape.”

This kind of inconsistency is a problem for systems that epdication, because filerent repli-
cas may introduce the new object affdient times and therefore may havéelient flavors for the
same elements. We could use synchronization to control wdyglitas introduce the new object,
but this may stall the system when nodes or the network fdierAatively, we can repair inconsis-
tencies using state transfer, but not all systems suppisrtTherefore, it is a good idea for upgrade
specifications to satisfy property (3.13).

Had we chosen invariant (3.15), these shadow methods wadldiark. The shadows fan-
sertColor andinsertFlavor would need to preserve the color-flavor mapping required3bds). For
example Oq|q.shadowFlavorSet$insertFlavor(x, cherry) would need to add to Oqq with the color
“red.”

Had we chosen invariant (3.16), our original mapping fumttand shadow methods would
work, but we could use even weaker ones. For example, we clafideFlavorSet.shadowColor-

Set$delete to have no fect.

Example: ReplacelntSet with CompactSet

All the methods in the previous example had determinigtieats (except failure exceptions, which
are non-deterministic). We now show how to define an upgratervnethods have non-deterministic
effects.

This upgrade replaces objects of classSet (Figure 3-1, page 33) with objects of claGsm-

pactSet, whereCompactSet is the same amtSet, except it replacedelete with compact:

void compact()

effects: thigest C thispre
That is,compact removes some subset of elements from the set (possibly n8imeeCompactSet
does not haveelete, this upgrade is incompatible.
We definel as:

OoId = Onew (3-20)

46

www.manaraa.com

i.e., CompactSet andIntSet always contain the same set of elements. This means our nzappi
function is simply the identity map.

The shadow methods fansert (in either direction) are straightforward€@ompactSet.shadow-
IntSet$insert has the samefieect asCompactSet.insert, and IntSet.shadowCompactSet$insert
has the samefkect asintSet.insert.

The shadow oflelete on CompactSet must removex from the set to satisfy:

void CompactSet.shadowlIntSet$delete(x)

gffects: x € thisye = thisyest = thisyre — { X},

else throws NoSuchElementException

What about the shadow abmpact on IntSet? | requires that when elements are removed from
CompactSet, the sameelements must be removed fromSet. But we cannot express this just
usingthisyre and the (non-existent) argumentdntSet.shadowCompactSet$compact. To express
this dtect, the specification of this shadow method needs to refére@re and post states of the

companion object, i.eCompactSet. We refer to these states ity andthatyost:

void IntSet.shadowCompactSet$compact()

effects: thigost = thatyost

When the specification of a shadow method referthtd,. andthat,s, the meaning is that the
non-shadow method runs first, producing the post state ofdngpanion; then the shadow runs,
and it can refer to the pre and post states of the compani@tibbj

But most shadow specifications do not need this extra infaomasince giverthisye andl, we
know thatthaty satisfied (thisyre, thatye); and if the non-shadow method is deterministic, then we
can deduce information abothtaty,st from what we know othatyre.

It may be tempting to specify thefects clauses of all shadow methods @Risyost, thatyosy).
But if the invariant is not one-to-one, this is not precisewgh. Furthermore, specifying shadow
methods in terms of the invariant obscures the meaning dépieeification (the implementor must
consider both the non-shadow specification and the invatogether to deduce what the shadow is

supposed to do). Therefore, we advocate writing out ffects clauses of shadow methods in full.

47

www.manaraa.com

3.4.5 Disallowed Calls

In all the examples so far, we have been able define the shaddhods for an upgrade. But
sometimes this isn’t possible, because preserving theiamtd between two objects causes one of
them to violate itshistory propertiesi.e., make an illegal state transition (Section 3.1.2).

We resolve such conflicts by disallowing methods. We require

Subtype Rule After removing disallowed methods, a type T with its shadoetimds must be a

behavioral subtype of T.

Our disallow constraint requires that we never disallowsctd the current type. Therefore, there

are two cases to consider:

1. Thewis simulated, so we can disalloW,eys methods but nofTyy's (because it may be the

current type)

2. Toq is simulated, so we can disalloWgg’'s methods but nof,ews (because it may be the

current type)

This is stricter than necessary, because when both typesiratgated (i.e., neither is the current
type), we could disallow calls to either one. We limit ouvesl to the two cases above to simplify the
process of determining which methods to disallow and siippiie implementation of simulation
objects.

We want to disallow the minimal set of calls to an type so thiahts cannot observe violations
of the history properties of either type. Let’s consider tve cases abovel (e is simulated,Tqg
is simulated) in turn. Whe ey is simulated, we disallow enoughey methods so that these

properties hold T, iS Thew With its disallowed methods removed):

P1 T, With the Toq shadows is a subtype &f

P2 When the transform function runs al¥,e, becomes the current object, clients that were using

Thewand start using new Observe no violation of hew's history properties.

P3 Toig with the T, Shadows is a subtype dfg.

Therefore, thel ., shadows inP3 are the shadows of all,ey mutators that weren'’t disallowed
by PL
WhenTyq is simulated, we have the reverse case, i.e., we disallowgrih,q methods so that

these properties hold:

48

www.manaraa.com

P4 T_ 4 With the Tpey Shadows is a subtype & ;.
PS5 ThewWwith the T, shadows is a subtype ®few

T4 IS Toid With its disallowed methods removed.

Thus, our approach for disallowing methods is as followsurtSiy assumin@ new is Simulated,
and define shadows for thE,q mutators (because they must be allowed). Decide wihiigh,
methods must be disallowed to guaranBeusing induction over computations of the node that
include calls toTpews allowed methodsTews shadows ofTqg’'s methods, and the upgrade that
makesOnew the current object. Clearly the set of disallowed methody malude observers of
Trew but it may also include mutators to satish2.

Next, define shadows for the allowdg.,, mutators. If this isn't possible for a givehnew
mutator (because this would viola®S), it must also be disallowed.

Now consider the case whéRiq is simulated. Define a shadow for eaEk,, mutator that was
disallowed previously (because they must now be allowetignidecide whicfTgy methods must
be disallowed to guarantde4 and P5. Do not consider computations that include the upgrade,
because it has already run at this point.

The problem with disallowing is that it cripples the objeicigolved and so may degrade service.
An alternative is to weaken the invariahaind adjust the shadow methods so that these properties

are satisfied:

I(Ooid: Onew) = 1(Ooig-.m(args), Onew-shadowg$m(args))
A Hnew(Onews Onew-shadowFig$m(args)) (3.22)

[(Ooid, Onew) = 1(Ooid.shadow Fewdp(args), Onew-p(args))
A Hold(Oold, Oold-shadowFew$p(args)) (3.22)

Hnew is the history property foll ey it must hold for all sequences of states@f. By requiring
that shadow methods obey the history properties of a typgjuaeantee that our upgrade specifica-
tion obeys the subtype rule.

Let's consider an example of how to apply these techniques.

49

www.manaraa.com

Example: ReplacelntSet with GrowSet

This upgrade replacdstSet (Figure 3-1, page 33) witBrowSet (IntSet without delete). GrowSet
has a history property: later states are always superse&tartiér ones. This example is analogous
to upgrades that strengthen the guarantees provided byarsyBor example, CFS [42] guarantees
that files are stored for a certain time period, after whiagiistem may discard them. An upgrade
that extends this time period strengthens the history ptigseof CFS, because the new version
makes all the guarantees of the old one and more. It is alssip@gor an upgrade to weaken
history properties, e.g., by changing CFS to allow expligitetion of files.

Returning to our example, we define our invariaais:

OoId = Onew (3-23)

i.e., Ogig and Opey implement the same set of integers throughout the compatatirhus, our
mapping function is just the identity map.

We start by assumin@rowSet is simulated, so we need to define shadowslfitBet's mu-
tators, i.e.,GrowSet.shadowIntSet$insert and GrowSet.shadowlIntSet$delete. To preserve our
invariant, GrowSet.shadowIntSet$insert(x) must addk to the set an@rowSet.shadowlntSet$de-
lete(x) must removex from the set.

These shadow definitions mean that mutationdnt®et may violate the history properties of
GrowSet. If this violation is exposed to clients, those clients megdk. Therefore we must disallow
the methods o6GrowSet that could reveal the violation. We must disall@towSet.contains, since
it might allow clients to observe as being in the set and later missing, eGrowSet.contains(x);
IntSet.delete(x); GrowSet.contains(x). We must also disallovGrowSet.insert, since clients that
seeinsert(x) succeed will expect to seein the set after the node upgrades, but it might have been
removed, e.g.GrowSet.insert(x); IntSet.delete(x); TF; GrowSet.contains(x) (TF is the transform
that makesGrowSet the current object).

SinceT, ., has no methodf 1-P3are trivially satisfied. But if we were to allow eith&rowSet
method,P1 or P2would be violated.

Next, we consider the case whértiSet is simulated. Now all ofGrowSet’s methods are al-
lowed, and we must define shadows for any of them that are arataThere is just one shadow,
IntSet.shadowGrowSet$insert, and it has the samefect asiIntSet.insert. Finally, we need to

determine which methods dhtSet must be disallowed. We do this by considering whether the

50

www.manaraa.com

shadows ofGrowSet's mutators violatdntSet’s history properties (it has none, so they don’t, and
P4 is trivially satisfied) and whether the shadowsIpnfSet's methods violateGrowSet’s history
properties. GrowSet.shadowIntSet$insert is fine, butGrowSet.shadowIntSet$delete is no good
(it would violate P5). Therefore, we disallovintSet.delete.

In this example, we had to disallow methods of both simultpds, and in the case GirowSet,
we had to disallow all of its methods. We would like to avoidring to disallow so many methods,

and one way to do this is to weaken our invariant. If we defige:
Oold S Onew (3.24)

we can specify thaGrowSet.shadowlIntSet$delete(x) has no €ect. Then elements need not be
removed fromGrowSet, and we need not disallow any methods. But this approaclateslprop-

erty (3.13):
MF(Ogiq.delete(x)) # MF(Oglg).shadowlIntSet$delete(x) (3.25)

In the first casex is not in theGrowSet, while in the second case,s in theGrowSet.

If we keep our original invariant, then we have to accept thet that we cannot simulate
GrowSet while IntSet is the current object, and we cannot simullteSet.delete while GrowSet
is the current object. We can plan our upgrade to minimizeirtigact of this limitation, e.g., we
could use a schedule that upgratleSet nodes before upgrading the clients of those nodes, so that

no clients attempt to usBrowSet while it is being simulated.

3.5 Example

In Section 2.5, we presented an upgrade fieéenmServer, a file system that supports Unix-style
permissions, té\clServer, a file system that supports access control lists. In thisseave define
this upgrade using the methodology presented in this chapte

This upgrade is incompatiblée®ermServer and AclServer are unrelated by subtyping. There-

fore, we will need to define an invariant, mapping functiamg shadow methods.

51

www.manaraa.com

3.5.1 Invariant

The first step in defining this upgrade is to define an invaridmétween the abstract states of the
two types.
The abstract stat®, of PermServer is a mapping from files to owner names, group names, and

permission bits:
P = filename — (ownername, groupname, Or, Ow, Ox, Gr, Gw, Gx, Wr, Ww, WX)

whereO, G, andW refer to the file owner, file group, and the rest of the worldpexctively; and,
w, andx refer to read, write, and execute permission, respectively

The abstract statéy, of AclServer is a mapping from files to sets of access rights:
A =filename — (name, r, w, X, a)*

wherename is the name of a user or group; andw, x, anda refer to read, write, execute, and
modify-ACL permission, respectively.

Ideally, we would define an invariant that guarantees thatsubave the same access rights
whether they us®ermServer or AclServer. But this is impossible, because while a set of per-
missions can always be expressed as an ACL, an ACL cannoyslb& expressed as a set of
permissions. Therefore, the invariant mustlbgsy i.e., it may need to throw away information
when mapping awmclServer to aPermServer. Our goal is to define an invariant that throws away
as little information as possible.

We define an invariaritbetweerP andA as a per-file, bidirectional mapping:

P(filename) = (ownername, groupname, Or, Ow, Ox, Gr, Gw, Gx, Wr, Ww, WX)
o

({ ownername, Or, Ow, Ox, true) € A(filename)
V (ownername = “nobody”, Or = false, Ox = false, Ow = false)),

((groupname, Gr, Gw, Gx, false) € A(filename)
V (groupname = “nobody”, Gr = false, Gx = false, Gw = false)),

({ sys:anyuser, Wr, Ww, WX, false) € A(filename)

Vv (Wr = false, Wx = false, Ww = false))

This invariant says that for each set of permissionB,ithere is a corresponding access control list
in A that contains the same set of access rights for the file’s pumefile’s group, and the rest of

the.worlds-The ACL.may.contain additional rights for otheetssor groups as well.

52

www.manaraa.com

The invariant also says that for each access control lig,ithere is a corresponding set of
permissions irP. To handle the problem that ACLs may have information thancé be expressed
as a set of permissionsk,allows permissions to be set for “nobody,” a special [ggeup that has
no permissions. This definition dthas ambiguity: it allows for permissions to be set for “nojbd
even if the ACL has entries that could be mapped to specifis el groups. We could strengthen

| to prevent this; but instead, we’'ll use the shadow methodegolve the ambiguity.

3.5.2 Mapping Function

The mapping functiotMF defines the initial staté of AclServer given a statd® of PermServer.
We defineMF as follows:
For each filef in P,

whereP(f) = (ownername, groupname, Or, Ow, Ox, Gr, Gw, Gx, Wr, Ww, WX):

e Set the ACL for filef in A to:
user:owner: Or Ow OXx true
group:group: Gr Gw Gx false

system:anyuser: WrWw Wx false

where each line in the ACL is a name-rights mappindirthe first element in each line is the type
of principal—user, group, or system (special); the secdadhent is the name of the principal; and
the third element is the set of rights for that principal (egsed as fourrue or false bits).

MF established: the initial ACL for each file is one of the ACLs allowed thyfor the given

permissions of.

3.5.3 Shadow Methods

The next step in defining this upgrade is to specify its shash@thods. Let’s start with the shadows

of PermServer’s methods. There is only one mutateetPerms:

AclServer.shadowPermServer$setPerms(f, owner, group, bits)

e Sets the ACL for filé&f to:
user:owner: Or Ow OX true
group:group: Gr Gw Gx false

system:anyuser: WrWw Wx false

53

www.manaraa.com

This specification preservds because this ACL is one of the ACLs allowed byor the given
permissions of. This specification means the new ACL may throw away accghssrior principals
that were specified on the old ACL. If we want to avoid this, veaild instead specify that this
shadow just adds lines to the ACL rather than replacing the.AC

Now we specify the shadows éklIServer's methods. Again, there is just one mutatatACL:

PermServer.shadowAclServer$setACL(f, acl)

e Setsf's owner to the first user imcl with the “a” permission, or “nobody” if no such user

exists.
e Setsf's group to the first group iacl with no “a” permission, or “nobody” if no group exists.

e Sets thedr, Ow, Ox bits of f according to the access rights of the first usexdhwith the “a”

permission, or all false if no such user exists.

e Sets theGr, Gw, Gx bits of f according to the access rights of the first grouméhwith no

“a” permission, or all false if no such group exists.

e Sets thewr, Ww, Wx bits of f according to access rights efs:anyuser in acl (if it has no

“a” permission), or all false if no such rights exist.

This specification preservés because this set of permissions is one of those allowddftuythe
givenacl. But this does not necessarily create the maximally-pesinesset of permissions, because,
e.g., the second or third user in the ACL might have been &ibeitioice (depending on the ACL).
But this specification does better than the minimally-pssive one, which just sets the owner and

group for the file to “nobody” for all ACLs.

3.5.4 Implementation Considerations

Because ACLs may contain more information than permissitwe\clServer implementation may
need to keep more state than thermServer implementation. In particular, whefclServer is
implemented using a simulation object, that SO will needaeikpersistent state to record the ACL
information that is not stored (as permissions) in the ulydey PermServer. Furthermore, when
the node upgrades, amtiServer becomes the current type, the transform function will need t

incorporate the SO'’s state when producing the state cAti®erver.

54

www.manaraa.com

Managing the persistent state of thelServer SO is a lot of work. If it is not necessary to
provide full AclServer support, the upgrader may insteeltboseto disallow someAciServer calls
so as to simplify the SO and TF implementations. In partigulae upgrader could disallow all
calls tosetACL(f, acl) in which acl cannot be expressed perfectly as a set of permissions. Byg doi
so0, the upgrader allows the SO to be stateless and so simmphfieTF (since it no longer needs to
incorporate the SO's state). Of course, oActServer is the current type, aetACL calls must be
allowed.

Thus, disallowing-by-choice can be a useful way to managegementation complexity. In the
Chapter 4, we will discuss several other implementatidatee reasons why calls may need to be

disallowed.

3.6 Realizing the Sequence Requirement

The sequence requirement implies that a method call to ojeetofd.e., that implements one of a
node’s types) must reflect théfects of all earlier calls to all the node’s objects (i.e., &irof its
types).

To understand the behavior of an obj&atof type T, we need a computation history @
consisting of calls only td’s methods. However, the real computation history of a h@dgome
arbitrary interleaving of calls to all of a node’s types. Weishadow methods to rewrite this history
so that itis all in terms of.

Doing this rewriting requires that shadow methodsexgressiblén terms of the type on which

they are defined:

Expressibility A shadow method oit is expressiblef it can be defined as a sequence of calls to

T’s normal (non-shadow) methods.

But not all shadows are expressible, for two reasons: Firsbhay be missing some methods. For
example,CompactSet has nodelete method (it just hagompact), so there is no way to express
the dfects ofshadowlIntSet$delete in terms of calls taCompactSet's methods. The ramifications
of missing methods are serious, but this problem has an ehsyos: the user can simply add the
missing methods td (i.e., adddelete to CompactSet). Of course, this isn't reasonable when the
purpose of the upgrade is to remove the methods that are nesingl Furthermore, adding the

needed methods only works for new types; the user cannoteasdnethods to old types.

55

www.manaraa.com

The second reason a shadow may be inexpressible is becabshavior is incompatible, e.g.,
shadowlIntSet$delete on GrowSet. In this case the user cannot compensate by adding methods
(e.g., by addinglelete to GrowSet), because doing so would compromise the type’s history-prop
erties.

Expressibility is not the same asmplementability a shadow method may be expressible but
not implementable, because, e.g., the implementationdu@gjuire access to state that cannot be
accessed vid's methods. For example, suppddavorSet has a shadow whosd&ect is to remove
all elements from the set of a particular flavor. This shadosthod is expressible as a sequence of
calls toFlavorSet.delete; but it is not implementable, becauBkvorSet provides no way to iterate
over its elements or otherwise find all elements of a pasicablor. This kind of problem is easy
to fix by adding methods. And even if a shadow is unimplemdatate can still reason about the
sequence requirement as long as the shadow is expressible.

Assuming expressibility, rewriting the computation higtin terms of T’'s methods is easy. Start
with the original computation, and get rid of all calls to ebgrs. For each call to a mutator for
a type other thaf, replace it with the sequence of calls that expresses itdoghéin the direction
of T). Repeat this until only calls td are left. At this point, we know the state @f from its
specification, and therefore we understand how its stateeyohroughout the computation despite
interleaving.

For example, ifT is T; and the computation contains a cBllm(args), replace this call with the
effects of To.shadowE$m(args) expressed in terms df’'s methods, e.gT,.p(args); T-.q(). Next,
replace each of these calls with tHeeets ofT;.shadowp$p(args) andT;.shadowp$q(), expressed
in terms of T1's methods. The result is a computation expressed purelgring of T;’s methods
that allows us to understand h@y evolved throughout the computation.

Inexpressibility doesn't causefticulties in reasoning about the sequence requirement for the
two types involved in an upgrade (e.tntSet andGrowSet), because we have the shadow method
specifications. For example, the specificationdioadowlntSet$delete defines what happens to a
GrowSet object whenntSet.delete is called. (Of course, in this case, tBeowSet object is unable
to do much anyway when it's being simulated.) But inexptahksi does cause problems when
reasoning about the other (older and newer) types on the. ndtde problem is that to take the
next step in the rewriting described above, we need to betahigerpret the fects of the shadow

method on the other types. So far, we have no way of doing this.

56

www.manaraa.com

There are two cases to consider. First, a new type may havatonsitwhose shadows are
inexpressible as methods of the old type. In this case, weinstrained: we cannot add methods to
the old type to make the shadows expressible, nor can we etthegiefinitions of previous types
to define the ffects of the inexpressible shadows. Our only option is to ouie(disallow) calls
that would prevent us from reasoning about the sequencéreegent. So that the upgrade system
can disallow the appropriate calls, the upgrader must dasigthe methods of the new type whose
shadows are inexpressible (as part of defining the upgrade).

The second case is that an old type may have mutators whodevehare inexpressible as
methods of the new type. In this case, we have three optioinst, ve could make the shadows
expressible by adding methods to the new type. Second, we d@allow calls that would prevent
us from reasoning about the sequence requirement; in thes t@e upgrader must designate the old
methods whose shadows are inexpressible (as part of defimengpgrade). Third, we could specify
the dfects of the inexpressible shadows on later (newer) typesttijr

We discuss these two cases in turn.

3.6.1 Inexpressible New Methods

Suppose we have a sequence of two upgradiggely — Tog andToq — Tphew and the
shadow ofThen.mis inexpressible o gg. In this case, we cannot add methodsTtg to make
Tog-shadowewdmexpressible; and there is no way to define theas ofT,q.shadowTen$mon
Toldold» @S We have no way of providing an interpretation of a shadwt didn't exist at the time
Toldold Was defined.

To guarantee that we can always rewrite the computatioonyigito methods of any type, our
only options are to disallow calls t®ney.m or to disallow T4oig (@nd all earlier types) entirely.
Because of our disallow constraint, we cannot disallg..m while Tnew is the current type, and
we cannot disallow calls t@ggoiq While it is the current type. When neith@ke, nor Toigoid IS
the current type, we could take either approach. FurthesamceTqgolq iS retired, we can allow
ThewM (@ssuming it's not disallowed for other reasons).

Our approach is as follows. First, the upgrader designéiggsm as inexpressible as part of
defining theTgg — Thewupgrade. Whilel 4014 (Or Some older type) is the current type, all calls
to Thew-m are disallowed (this often happens anyway because of inatiilgies).

For example, supposk,qolg is ColoredCompactSet (a subtype ofCompactSet), Tqq is Com-

pactSet, and T iS IntSet. The upgrader designatégSet.delete as inexpressible, because there

57

www.manaraa.com

is no sequence of calls ttompactSet that can implemernghadowlIntSet$delete. While Colored-
CompactSet is the current type, all calls timtSet.delete are disallowed.

Next, when the node upgrades afgly becomes the current type, we have a choice: we can
either continue to disallove.m, or we could disallovall calls toTq 401 (@and all earlier types). We
choose the former, as we expect it to be less disruptivediadth the latter may be more appropriate
for certain upgrades). For example, wheampactSet becomes the current type, all callsitu-
Set.delete are still disallowed.

When the node upgrades again angd,, becomes the current type, we disallall calls to any
type older thanTqg, i.e., toToigoig @and all earlier types. (The disallowing is actually implertesl
by the upgrade system, since the implementatio gpfoig does not know that calls need to be
disallowed.) This gives us the sequence requirement llgivigince there are no calls to thg)goig
object, we do not need to define thi#eetsT,en.m on it. We can never allow calls t6ygoig again
after this point, since there is no way to know what state dusth have afteflew.mis called.

For example, when the node upgrades Butflet becomes the current type, all callsGolored-
CompactSet (and all earlier types) are disallowed. We can never alldig taColoredCompactSet

again after this point.

3.6.2 Inexpressible Old Methods

Suppose we have a sequence of two upgra@igs, — Thew @NdThew — Thewnew and the
shadow ofTyq.m is inexpressible oMy In this case, we have three options. First, we could
add methods td ey to makeTgq.m expressible. But supposkyq is IntSet, Tpew iS GrowSet,
ThewnewiS ColoredGrowSet (a subtype ofGrowSet), andTyq.mis IntSet.delete. In this case, it is
inappropriate to addelete to GrowSet.

Our second option is to disallow methods: we can disallowsdalTqq.m or disallow Thewnew
(and all later types) entirely. Because of our disallow ¢a@ist, we cannot disallow qg.m while
Tolq is the current type, and we cannot disallow call tewnewWhile it is the current type. We will
discuss this option in detail in this section.

Our third option is to specify theffects ofTyew.ShadowTig$mon Tpewnewdirectly, i.e., we can
define a shadow of the shadow method. We discuss this optib inext section.

If we choose to disallow methods to address this problemugigrader designatek,yg.m as
inexpressible as part of defining thgy — Thewupgrade. For example, the upgrader designates

IntSet.delete as inexpressible as part of defining theSet — GrowSet upgrade.

58

www.manaraa.com

While Tqig (or any older type) is the current type, we disallai calls to any type newer than
Thew i.€., t0Thewnewand all later types. For example, whiletSet is the current type, all calls to
ColoredGrowSet are disallowed.

When the node upgrades afgL,, becomes the current type, we have a choice: we could either
continue to disallow calls tdnewnew Or We could disallow all calls t@,,4.m. We choose the latter,
as it seems less disruptive to disallow one method than aemyple, andTly4.m must often be
disallowed anyway due to incompatibilities. This gives ls sequence requirement, because the
initial state ofThewnews Object is defined by the mapping function at the monigj, becomes the
current type, and all later calls can be rewritten in term3$,@fynews methods.

For example, when the node upgrades @&ndwSet becomes the current type, all callsGol-
oredGrowSet are allowed, and all calls totSet.delete are disallowed (this happens anyway for the
reasons described in Section 3.4.5). The initial stat€a@bredGrowSet is the result of applying
the mapping function t&rowSet at the momenGrowSet becomes the current type.

Finally, when the node upgrades ahgwnewbecomes the current type, we continue to disallow
calls to Tog.m. We continue to disallow calls tdqq.m even for later upgrades, as at that point

Toig-mis several versions in the past (afigly is probably retired).

3.6.3 Shadows of Shadows

Instead of disallowing calls t®nhewnewWWhenTgq.mis inexpressible, we can simply specify tHEeet
of Tnew.ShadowTig$m on Trewnew this is just a shadow’s shadow. Adding this extra specificat
means we can allow calls ewnew because we can now explain thi@eets of calls toTgg on
Thewnew@nd so satisfy the sequence requirement.

For example, sSUpposEyq is IntSet, Thew IS CompactSet, and TpewnewiS ColoredCompact-
Set. The shadow ofntSet.delete on CompactSet, shadowIntSet$delete, is inexpressible. When
the upgrader defines tl@mpactSet — ColoredCompactSet upgrade, this upgrade can include a

specification for the shadow’s shadow:

void ColoredCompactSet.shadowCompactSet$shadowIntSet$delete(x)

gffects: 3 (X, ¢) € thisyre = thisyost = thisye — {(X, C)},

else throws NoSuchElementException

Like any other shadow method, this must preserve the invabiatweerCompactSet andColored-

CompactSet. This specification allows us to explain théexts of a call tolntSet.delete on a

59

www.manaraa.com

ColoredCompactSet object; therefore we can allow calls to all three types steméously. In this
case, the shadow’s shadow is inexpressible, so the nextafy@eT newnewWill Nneed to specify a
shadow for the shadow’s shadow.TewnewWere insteadColorSet, the shadow’s shadow would be
expressible, and there would be no need to define a shadohefshtadow’s shadow.

Unfortunately, a shadow’s shadow might be incompatibldnhie type on which it is defined!
SUpposElgq IS IntSet, Thew is GrowSet, and ThewnewiS ColoredGrowSet. The invariant between
GrowSet andColoredGrowSet requires that they contain the same set of elements, anelGioav-
Set.shadowlIntSet$delete(x) removesx from GrowSet, ColoredGrowSet.shadowGrowSet$sha-
dowIntSet$delete(x) must also remove from ColoredGrowSet. This violatesColoredGrowSet’s
history properties, which means it must disallow methoddessribed in Section 3.4.5.

But it is not acceptable to simply disallo@oloredGrowSet’s methods as usual, as this would
mean they were disallowed even when the node upgrade&anSet is the current type! In this
case, we want to allow all afoloredGrowSet’s methods. This means we need a way to distinguish
methods disallowed because of shadows from those disallbweause of shadows’ shadows (and
SO on).

We propose the following approach. Methods that are disaitbbecause of shadows (e.qg.,
all of GrowSet’'s methods, because ghadowIntSet$delete) are simply marked as “disallowed”
in the upgrade definition. Calls to these methods are disatiountil the type on which they are
defined (i.e.GrowSet) becomes the current type. Methods that are disallowediseaaf shadows’
shadows (e.qg., all afoloredGrowSet's methods, because shadowGrowSet$shadowlIntSet$de-
lete) are marked as “shadow-disallowed” in the upgrade defmiti€Calls to these methods are
disallowed until the typgrevious tothe type on which they are defined becomes the current type
(again, this issrowSet). This procedure can continue ad infinitum, but it is unkkil be necessary
beyond this level.

The set of methods that are disallowed for a type gets shealtrat type gets closer to becoming
the current type. A typéewcould have shadow-shadow-disallowed methods, shadalladised
methods, and disallowed methods; these would be disall@m&tToigo1d, Told, and Thew beCOmMe
the current type, respectively. Whé@Rewnewbecomes the current type, soffig,, methods might

again be disallowed, but this would be because of conflicis Wewnewonly, not any earlier types.

60

www.manaraa.com

Chapter 4

Simulation Objects

Chapter 3 presented our abstract model for how nodes impiemaltiple types simultaneously.
This chapter presents several designs for realizing thidahasing simulation objects.

We begin with a discussion of previous approaches to imphgimg multiple types on a single
node. Some of these approaches fail to meet the requiremwengst forth in the previous chapter;
others meet the requirements but have poor expressive foeercalls must often be disallowed);
still others provide good expressive power but are impecattio implement for more than a few
types. We explain why our approach is practical and is movegpful than previous approaches.

We then present various ways to use simulation objects tdeimgnt multiple types. These
models dffer in how calls are dispatched to objects (i.e., which objétiplement which types)
and how simulation objects can interact with one anotheffeRant models fier different tradefis
between ease of implementation and expressive power.

The first model is thenterceptor model In this model, the simulation object for the latest
version handles all calls (ibterceptscalls intended for the earlier versions). It can delegalis ta
the previous type, which may be implemented by the currejgoblor another SO. The interceptor
model is simple and powerful, because a single object manaly¢éhe types of the node. But for
the same reason, this model isfdiult to use when types are incompatible.

The second model is thgirect model In this model, calls for each version are dispatcded
rectlyto the object that implements the type for that version, Wile current object or a simulation
object. Each SO implements just its own type and can delegditeto the next object closer to the

current object. This means the direct model is practicahmigss of how many types there are and

61

www.manaraa.com

how they are related. However, this model has limited exgivespower (i.e., calls must often be
disallowed), because it isfiicult to ensure that theffects of a call are reflected on all versions.

We can combine the first two models ifngbrid modethat provides the benefits of both models.
As there are several ways to combine the direct and intascempbdels, there are several variants of
the hybrid model thatfber different tradefis.

However, even the hybrid model and its variants have theaknesses, so we present another
approach: thaotification model This model is like the direct model in that calls for a versiare
dispatched to the object for that version. However, inst#duaving each SO delegate to a single
other object, we have each 310tify the objects for the next and previous versions on each method
call. Those objects respond to the notification by updatimgy tstate (as specified by the shadow of
the method that the notifier received); then they propadaenbtification to the next objects. The
notification model has more expressive power than the otlogiets, but it also requires more work
from the upgrader.

After describing the various models, we discuss how welheagpports concurrency control.
This is a vital concern in distributed systems, since nogeieally handle many clients in parallel.
We choose not to serialize calls in the upgrade layer, becthis would cause unacceptable perfor-
mance degradation and, in some cases, could cause deattistdad, we require that simulation
objects handle concurrency themselves. Some of the simmilatodels can handle concurrency
well, but others must rely on application-level concurgenontrol.

We conclude with a discussion of the tradisobetween the dlierent models, guidelines for
how to choose the right model for a given system, and a sumpofahe reasons why calls may be

disallowed.

4.1 Previous Approaches

When diferent nodes or objects in a system run classes fréfardnt schema, we say the system
is running inmixed modeOur approach relies on mixed mode to allow upgrades to bedsdéd,
and other systems have used similar approaches, both iibdiet] systems and in other domains.
In this section, we compare several techniques for supgprtiixed mode.

The basic idea behind existing techniques for supportingechinode is to allow each node in
the system to implement multiple types simultaneously—oneach version of the system. When

one node makes a method call on another, the caller assuaidbeltallee implements a particular

62

www.manaraa.com

type. In reality, the assumed type may be just one of seveséithe callee implements. This design
simplifies software development by allowing implementarsvtite their software as if every node
in the system were running the same version.

The simplest way that a node could implement multiple tygdsyi running instances of each
version side-by-side, each with its own state, as depicteeigure 4-1(a). For example, a node
might implement two versions of a file system specificatiorrioyning instances of both versions
side-by-side. A caller that interacts with only one of the@twstances can store and retrieve files as
usual. Two callers that interact with the same instance barediles. But if two callers are running
different versions, they interact withfféirent instances and cannot share files. A single caller may
lose access to its own files by storing files at one versiom tipgrading, then attempting to fetch
files at the next version. Since each instance of the file sysi&@s its own state, the files that the
caller stored at one version are inaccessible at the next.

The problem with the multiple-instances approach is thés$ ¢a one instance are not reflected
on the states of the other instances. To allow calls to one typbe reflected on the others, the
implementations of those types must share a single copyeaidke’s state. A straightforward way
to do this is to allow them to share state directly, as illgtd in Figure 4-1(b). Unfortunately, this
is just too complex. The implementations of each type mustemw avoid changing the shared
state in such a way that would break the implementationseobther types. This is non-modular:
implementing each additional type becomes increasingticdit.

To ensure that a node provides at least some useful funttigruame type can be designated the
currenttype for the node. The node runs an instance of the curreetapd so can support calls to
that type perfectly. To support other types, the node harglers

The simplest handler-based model is illustrated in Figufi€c} and is similar to Skarra and
Zdonik’'s schema versioning model for OODBs [97]. Calls te tlurrent type are dispatched to an
instance, and calls to other types are dispatched to stateteor handlers that can substitute results
for those calls. This model works only if the error handless ceturn a sensible default for the calls
they implement. This model is also limited in two ways: fiteindlers cannot implement behaviors
that use (observe or mutate) the current instance’s statbsecond, handlers cannot implement
behaviors that use state outside of that instance.

One can address the first limitation by allowing handlersdoeas the current instance’s state

via its methods, as illustrated in Figure 4-1(d). This mdde&d handlers share state safely and lets

63

www.manaraa.com

Full State

Version 1
instance

Full State

Version 2
instance

Full State

Version 3
instance

Shared State

Version 2
handler

Version 1
handler

Version 3
handler

Version 1
calls

Version 2
calls

Version 3
calls

(a) Multiple Instances

Version 1 Version 2
calls calls

Version 3
calls

(b) Shared State

Version 1
handler

Version 2

instance

Version 3
handler

Version 1 Version 2

handler instance

Version 3

handler

Version 1
calls

Version 2
calls

Version 3
calls

(c) Disconnected Handlers

Version 1 Version 2
calls calls

Version 3
calls

(d) Connected Handlers

Partial State

Version 1
handler

Full State

Version 2
instance

Partial State

Version 3
handler

Partial State Full State

Version 1 Version 2

handler instance

Partial State

Version 3
handler

Version 1

calls

Version 2
calls

Version 3
calls

Version 1 Version 2

calls calls

Version 3
calls

(e) Simulation Objects (Direct Model) () Simulation Objg¢Notification Model)

Figure 4-1:Systems for supporting multiple types on a single node. Eade (large box) supports calls at
versions 1, 2, and 3. Arrows indicate the direction of metbalts. In (a), the node runs instances of each

type. In (b), the node runs handlers for each type that shiate glirectly. In (c), (d), (e), and (f) the node
runs an instance of version 2's type and has handlers forieessl and 3.

64

www.manaraa.com

them support behaviors that can be defined in terms of thanosts behavior. Examples of this
approach include thiaterprocedureof PODUS [48] and thevrappersof the Eternal system [102].

The problem with this model is that it is only practical formall number of types. To enable
a node to support calls dd types, one must defind — 1 handlers, each of which delegates to the
current type directly. These handlers must be redefined #aehthe current type changes (due to
upgrades), which becomes impractical as the number oforessncreases.

One can keep the number of handlers manageable haimdjer chaining each type has just two
handlers defined for it, one that calls methods of the nexidrigersion and another that calls meth-
ods of the next lower version. Thus, a chain of handlers camartall on any type to calls on the cur-
rent type. Instances of the handler chaining model includak/and Somerville’s updafeackdate
model for schema versions in OODBs [81] and Senivongse’slt#on transparency” model for
distributed services [93].

The problem with handler chaining is that it may prevent harsdfrom implementing certain
behaviors: e.g., if versions 1 and 3 support a state-acggsshavior that version 2 does not,
then a version 1 handler cannot implement that behavioresincannot call version 3 directly.
This illustrates a general design traffedby incorporating knowledge of additional types (thus,
additional complexity), handlers may be able to better en@nt their own type.

None of these previous models address the second limitatmtioned above: they do not allow
handlers to implement stateful behaviors that cannot beelfin terms of the current type. Our
solution addresses this limitation by allowing handlerbattwe callsimulation objectsor SOs—to
implement calls both by accessing the state of the instarscgésvmethods and by accessitigeir
ownstate, as illustrated in Figure 4-1(e).

Simulation objects can implement more behaviors thanlssgdandlers, and unlike the multiple-
instances approach (Figure 4-1(a)), simulation objeatsecaure that calls to one type are reflected
on the others. But using handler chaining can still requiad talls be disallowed, as we discuss
in Section 4.3.1. We can do better be allowing informatioowtmethod calls to flow in both
directions, as illustrated in Figure 4-1(f). We discuss tiiodel in Section 4.5.

We now present our models for how to use simulation objects.

65

www.manaraa.com

4.2 Interceptor Model

When a node hears of an upgrade thi¢ets it (i.e., the upgrade includes a class upgrade whose
old class is the node’s current class), it imnmediately listfuture SO for the new class. In the
interceptor model, this SO takes over: it receives all dalisnded either for the previous object or
for itself. The SO implements all calls for both objects; &yrdo so using its own state or by calling
methods of (i.e., delegating to) the previous object. Wethid the interceptor model because the
SOinterceptscalls intended for its delegate, rather than letting thegiee handle them directly.

When the node upgrades, it replaces its current object anfilitbre SO with an instance of the
new class; this instance becomes the current object of tHde.ndhere is no need for a past SO,
because calls made by clients running at the old version ameléd by the current object. This
means the current object must implement both the old and yyeest

There could be a new upgrade that comes along before the @aedgpgraded to the new class.
In this case, the node installs another SO that intercefiitsfoa all previous objects; the SO may
delegate to the immediately preceding object. When the opdeades, it replaces its current object
and its oldest SO with an instance of the new class for itssblpending upgrade. Figure 4-2 depicts
this process.

We optimize in the case where the new class implements the sgra as the old class. In this

case, the node just delegates all calls for the new type tolthene, and we don't need an SO.

4.2.1 Discussion

The interceptor model works well for compatible upgrades;ause the new type (implemented by
the interceptor) is always a subtype of the old type. Butighisot true of incompatible upgrades,
using the interceptor model for them is mordidult.

In an incompatible upgrade, the new type is either a supertyphe old type or it is unrelated.
An interceptor must implement the new type as well as the n&d gncompatible interceptors need
a way to distinguish calls intended for the old type from thés the new type, since there may be
name conflicts. This is an implementation detail that wewdisan Chapter 7.) In the unrelated-
type case, the SO cannot simply delegate the old methodaugecalls to the old type maffect
the new object (as specified by the shadows of the old methodseonew type). When the node
upgrades and replaces the SO with an instance of the new tt&s®bject must also implement

both types; this is undesirable, because it means the nexgtdigs to implement legacy behavior.

66

www.manaraa.com

node node

learns of T learns of T JEEE
version 1 w | version 1 | w | version 1 11 r/ v2 4
object : object : object \ future /!

1 w 1 w 80~

vl calls vI+v2 calls node vI+v2+v3 calls
upgrades to

version 2

version 1 vI+v2+4v3 calls

is retired
node

learns of
version 4

fmmmmmmm o P
! ! /7 AN
| on?2 | Sov3
' version2 'q 1 L
! object | . future y
1 w ~S0.-

<<

v2+v3+v4 calls

Figure 4-2: The interceptor model, presented as a sequence of states@de Large arrows are state
transitions. In each state, the box is the current object] e circles are SOs. The newest object (solid
border) handles all calls for the node; the dotted-bordejeals are “hidden” by the interceptor. Objects
may delegate calls as indicated by the small arrows.

While undesirable, supporting two types in a single objeateiasonable and occurs in some
real systems, e.g., NFS servers typically implement batiNRSv2 and NFSv3 protocols [36]. But
this becomes unreasonable when we consider the next upgtadbject must implement its own
type as well as those fdyoth previous versions. For example, if a node upgrades from RR8v
NFSv3 (unrelated types) and then from NFSv3 to NFSv4 (utedlaypes), then the latest object
must support all three protocols simultaneously. This is-trivial: for example, NFSv2 and NFSv3
file accesses need to be serialized against locks acquimedR&Vv4.

Using interceptors for incompatible upgrades means theagey must understand every type
that the node supports and the relationships between them. mdde supports more types at once
and as the relationships between the types become moreicated! the likelihood that the inter-
ceptor code is correct declines.

There is another reason why interceptors cannot suppastripatible upgrades well: conver-
gent upgrades. These are upgrades that replace fWeretit classes with the same new class. For

example, suppose version 1 has classes A and B, and versamj@dt class C. This means the ver-

67

www.manaraa.com

sion 2 upgrade has two class upgrades, one that replacehAveihd another that replaces B with
C. Now consider a version 3 upgrade that replaces C with Ont&ceptor—which must handle
calls for all three versions—cannot know whether calls fersion 1 expect As type or B’s type!
We could fix this by having nodes identify the type they expe&ach call, but this means the ver-
sion 3 interceptor needs to have code to handle both type®fsion 1, which makes implementing
it even more diicult.

Thankfully, our other simulation models handle the probt#roonvergent upgrades more grace-
fully than the interceptor model: they keep a record of wigpes a node had in earlier versions in

the form of past SOs.

4.2.2 Correctness

It is easy to satisfy the requirements put forth in ChaptertBé interceptor model, because all calls
go through a single object, so it can serialize all calls toribde and can reflect thfects of each
method on each version appropriately. As we will discussdati®n 4.6, this makes the interceptor
model particularly attractive for applications that regutoncurrency control.

Sometimes we might want to disallow calls because impleimgrihem in an SO is too in-
efficient, e.g., because they require expensive operationsatotain the appropriate state in the
interceptor. This is okay unless those calls are part of thieent type, in which case the disallow

constraint requires that those calls are supported.

4.3 Direct Model

We could use interceptors for incompatible upgrades, bimgdgo has poor modularity as the node
supports more and more types. We want modular reasoningthe upgrader should only need
to know about the new version and the previous one, regardieshe number of types that a
node supports. Therefore, we use #atient approach for incompatible upgrades: the SOs aren't
interceptors. Instead, each object receives calls oniy frients running at the same version as the
object, so each object only implements its own type.

SOs may delegate to the next object in the chain: the next olgject for future SOs, the next
newer object for past SOs. A class upgrade defines a futurdn&@nplements the new type and a
past SO that implements the old type, so the upgrader onlgsnimeunderstand these two types to

define both SOs. Thus, the direct model meets our modulamigysg

68

www.manaraa.com

node node

learns of learns of
. version 2 . version 3 .
version 1 é version 1 é version 1
object object object

node

? node node
vl calls upgrades to upgrades to
version 2 version 2
learns of

. versiop 3 .
version 2 version 2

object object

f t

vl calls v2 calls vl calls v2 calls v3 calls

version 1
is retired

version 2

®

object

?

v2 calls v3 calls

®

Figure 4-3: The direct model. Each object handles calls only for its oersion. Objects may delegate
calls as indicated by the small arrows. Two sequences otewaea possible, depending on whether the node
upgrades to version 2 before or after installing the SO fasien 3. Regardless of the sequence, the node
always supports all the non-retired versions it knows about

Figure 4-3 depicts how SOs are managed in the direct model.

We optimize in the case when the new type is a supertype ofithgme. Since the old type can
handle all calls intended for the new type, we don’t need tiaré SO and can simply forward the
new calls to the old type. But we still require a past SO whennbde upgrades, because we don't

want the current object to have to provide the legacy belhavio

4.3.1 Expressive Power

We require that thefBects of a method call on any of a node’s types reflect ffexts of all earlier
calls to all of that node’s types. This is simple for intermep: they see all the calls, so they can
apply the &ects of each method (or shadow method) on each type. But iditthet model, an SO
does not get to execute a shadow method when calls go ditedttydelegate. Instead, the SO must
meet the sequence requirement by calling methods of itgaele Calls to an SO observer must

reflect the abstract state of the SO, which in turn must refteetfects of previous mutations to

69

www.manaraa.com

its delegate as defined by the shadow methods for those maut&imilarly, calls to an SO mutator
must dfect the abstract state of the delegate as defined by the simdthed for that mutator.

Unfortunately, it is not always possible to implement an &t meets our requirements in the
direct model. There are two fundamental problems: Firdls ¢hat go directly to the delegate and
bypass the SO may invalidate the state of the SO. Second fféwseof an SO method may be
unimplementabléy making calls to the delegate. In both cases, we must digalbme calls to the
SO to meet our requirements. We discuss the two problemsnn tu

The first problem with the direct model has to do with intevieg. This means an SO may
not be able to tell what calls the delegate receives and $matibe able to reflect them correctly.
For example, consider an SO that implemedtdorSet by delegating to an object that implements
IntSet. The delegate stores the state of the set (the integers setheind the SO stores the color for
each integer in the set (the delegate knows nothing of gol@¢e can implement the state of the SO
as a mapping from integers to colors, update this mapping gptts toSO.insert, SO.insertColor,
andSO.delete, and query this mapping dsO.getColor.

But this doesn't work, because our shadow methods requat rttutations of the delegate
change the state of the SO in ways thfieet this mapping. LeD refer to the SO’s delegate, and
consider the sequence of ca8®.insertColor(1, red); O.delete(1); O.insert(1); SO.getColor(1).
The result of the final call will be “red,” because the SO carkmow that 1 was ever removed; but
because 1 was removed and re-inserted, its color shoulcetmnth specified bZolorSet.insert(x),
which is blue (see Section 3.4.2 and Figure 3-2).

The problem here is that whebd.delete(1) runs, the SO does not get a chance to apply the
effects ofSO.shadowIntSet$delete(1). This results in a violation of an invariant between theestat

of the SO and the state of the delegate:

(x,cy € SQcolorMap = x € O

whereSO.colorMapis the private state of the SO that stores the mapping froegérs to colors.
We might hope to correc$0O.colorMapwhen the next SO method is called, but this doesn’t work
as demonstrated in our example: mutations to the delegateeraae the evidence that the SO state

has become stale.

IWe can think of this invariant asrapresentation invarianof the SO. The fact that calls can mutate the delegate di-
rectly is a form ofrepresentation exposurénterceptors don’t have this problem, because #regapsulateheir delegate.

70

www.manaraa.com

The direct model provides no way to inform an SO that a call d@se to its delegate (later
models will remedy this fault). The only way to prevent the'S6tate from becoming stale is
to disallow some SO methods (we cannot disalldwlelete because of the disallow constraint).
We might think to disallowSO.getColor(x), since it is the method that revealed the problem in
our example. But this does not fully solve the problem, beeahis doesn't prevent the SO state
from becoming stale. After the TF runs, the SO is replacedheycurrent object and its stale state
will be revealed, since at this poigetColor is allowed. Therefore, we must instead disallow the
method that allows the inconsistency to happen in the fieteISO.insertColor. If we disallow
this method, thersO.colorMapwill always be empty, and the invariant cannot be violatetbnir
the callers’ point of view, elements of th@olorSet will always have the color blue (until the TF
runs), and no sequence of calls to the delegate or SO can aauseonsistency. In fact, we could
allow calls toSOQ.insertColor(x, blue); by the same reasoning, no inconsistency is possible.

The second problem with the direct model is that tiieas of an SO method may lbmim-
plementableon the delegate. This may be because the method is a mutatsevshadow igex-
pressible(Section 3.6), i.e., there’s no way to express tffeas of the shadow as a sequence of
the delegate’s methods. In this case, the SO method is oiéalicdved anyway (for the reasons
discussed in Section 3.6). However, certain observers e ome expressible mutators may be
impractical to implement because the delegate’s typgmeisaviorally incomplet¢65]. Informally,
this means the delegate does not provide “full access” tddtatype. For example, consider an
SO that implement$ntSetWithSize (IntSet with a size method) by delegating to an object that
implementsintSet. The delegate provides only one obsengemtains. The only way for the SO
to determine how many elements are in thiSet is by calling contains on every possible inte-
ger, of which there may be infinitely many (if these are aduitrprecision integers). Since this is

impossible (or at least impractical), the SO must disalbize.

4.4 Hybrid Model

When upgrades are compatible, the interceptor model isteagason about and implement. But it
is impractical for incompatible upgrades due to modulgpityblems. The direct model is practical
for all kinds of upgrades, but it is much less powerful tham ithterceptor model. For example, an
SO in the direct model cannot even simul@telorSet on IntSet well, even thoughColorSet is a

subtype ofintSet!

71

www.manaraa.com

Neither model is ideal in all cases, but we can do somewh#grhgting a hybrid approach. The
idea is to use interceptors when possible, and-interceptorsotherwise (where non-interceptors
are SOs that receive calls for only their own type, as in thheaimodel). This does not mean
simply using interceptors for compatible upgrades andintarceptors for incompatible upgrades,
because we also want to use interceptors for incompatitgeades when this is practical, i.e., when
the interceptor just has to implement the old and new typdsarothers.

After a node installs an incompatible upgrade, it suppdwsaid type using a past SO that runs
as a non-interceptor. We cannot allow both past SOs andef@@s to run as interceptors, because
only one object can intercept calls for the current type. Weose to provide this extra power for
future SOs because we expect compatible upgrades to berniaao case, so we want to be able

to simulate subtypes using interceptors. We will reexantmedecision in later sections.

4.4.1 Rules

The hybrid model introduces a complication: once there imeompatible future SO, we can’t add
more interceptors to the chain. This is because an intesc#pt follows an incompatible SO is only
prepared to handle the incompatible SO’s type, not the oaepitecedes it (if the interceptor had
to handle all earlier types, we would have the same modylpridblem that caused us to consider
non-interceptors in the first place).

It is unsafe to run an interceptor as a non-interceptor, lmexadhis violates the assumption
made by the implementor that the interceptor receives ##.c@onsider this scenario: the current
object implement$lavorSet, the first (incompatible) future SO implementgSet (and intercepts
the FlavorSet calls), and the second (compatible) future SO implem&aoisrSet. The ColorSet
SO expects to intercept all calls, but calls felavorSet must go to thentSet SO, because the
ColorSet SO cannot handle them. This means @worSet SO cannot keep its colors in sync with
the underlying set of integers, and this may violate the etgtimns of clients.

We could handle this problem by delaying the installatiomtgrceptors (compatible or incom-
patible) until the latest object is the current object omsrgerceptor for a compatible upgrade. But
delaying the installation of SOs is a problem, because we hasumed that nodes can always install
the future SOs for new upgrades immediately—this propdtowa us to schedule node upgrades
however we want.

We could address this problem by requiring that each upgpaoldde two future SOs: one that

runs as an interceptor (when possible), and another thatasra non-interceptor (and disallows

72

www.manaraa.com

calls when necessary). But we don’t want the upgrader to layegovide two implementations.
Since the only dference between the two implementations is that some calldmdisallowed in

the non-interceptor, we allow the upgrader to provide alsiilgplementation that indicates this by
marking those methods @&#terceptOnly The node automatically causes calls to those methods to
fail when the SO is a non-interceptor. The SO can also declidehacalls to disallow at runtime,
using a flag provided by the node that indicates whether thesS@ interceptor.

To summarize: each future SO runs either as an interceptootoiThe system has an invariant:
if any future SO is a non-interceptor, then so are all moreme&Os.

When the system installs a future SO, it installs it as arrdefator if possible, else not. This is
possible if either there are no future SOs or if the most re€&his running as an interceptor and
is for a compatible upgrade. When the node upgrades, themystvitches future SOs to run as
interceptors if possible, moving up the chain from the coir@bject to the most recent future SO.
This means once a future SO becomes an interceptor (and deggrénding on this fact to manage
its state), it will remain an interceptor until an upgradplaees the SO with the current object.

There are past SOs for incompatible upgrades but not for atiblp upgrades. We implement
calls from a past SO to its delegate as follows: if the calhiemded for the current object and there
are future SOs running as interceptors, the call goes to & necent interceptor. This is safe,
because the interceptor implements the type expected lpaiesO.

Figure 4-4 depicts how we manage SOs in the hybrid model.

Example: Simulating ColorSet on IntSet

Figure 4-5 presents pseudocode for a future SO that implen@aorSet by delegating tdntSet.
The SO keeps a mapplors, from integers to colors, with the assumption that an integé-
out a color in the map has the color blue. The SO simply dedsgasert andcontains. The SO
implementsnsertColor andgetColor according to their specificationsisertColor is labelednter-
ceptOnly because the SO cannot keep the colors in sync witlntlset unless it is an interceptor.
Finally, the SO implementdelete appropriately, i.e., so that deleting an element and reriimg) it

will restore its color to blue.

4.4.2 Discussion

Most software changes preserve or extend the behavior o$tarsy rather than removing behav-

iokTherefore,,we expect,compatible upgrades to be the camecase, i.e., most upgrades will

73

www.manaraa.com

node node

learns of fmmmmmm o
|

X I
X versiop 2 | . !
version | ! version 1 !

. . |
object (incompatible) :L object

vl calls vi+v2 calls vI+v2 calls v3 calls

node
upgrades to
version 2

learns of fmmmmmm o
|

K I
version 3 | X I
! version | !

Ny . ' object
(compatible) " !

vl calls v2+v3 calls

version 1

is retired
version 3 version 3

node
upgrades to
version 3

object object
vl calls v2+v3 calls v2+v3 calls

Figure 4-4: The hybrid model. White SOs are interceptors; grey are mierceptors. Version 2 is an
incompatible upgrade: its future SO is an interceptor tiraplements versions 1 and 2, and its past SO is a
non-interceptor for version 1 only. Version 3 is a compatibpgrade: its future SO is an interceptor when
possible, but it runs as a non-interceptor before the nodgragies to 2. After the upgrade, the SO intercepts
all calls for versions 2 or 3, including those from the versibpast SO.

not change a node’s type, and those that do will extend the itygompatible ways. The hybrid

model works well in this case, because compatible SOs runtescéptors. However, incompatible
upgrades are problem: they require that we use non-intensefo support later future versions and
past versions.

Because past SOs are so weak, clients that upgrade befarsghesrs (and use future SOs)
get better service than clients that upgrade after theuressr(and use past SOs). But this does not
match reality: servers typically upgrade eagerly, whilertis upgrade only when necessary. This
is because servers are under the direct control of the seprimvider, while clients are under the
control of users.

We could address this problem by reversing the hybrid moga$t(SOs are interceptors and
future SOs are non-interceptors), as depicted in Figure Bt works well when servers upgrade
ahead of clients and don't talk to each other. However, thjg@ach has modularity problems,
because each upgrade must define a past SO that supportsvalugrversions of the node (down
to the latest retired version). This is because once a past 8@0ning as an interceptor, we cannot

later switch it to run as a non-interceptor (doing SO couldblidate the state of the past SO).

74

www.manaraa.com

class ColorSetSO implements ColorSet:
ColorSetSO(IntSet next, boolean isInterceptor):
colors = new Map() // empty map; means all colors are "blue"

delegate insert(x)
delegate contains(x)

interceptOnly void insertColor(x, c):
if not contains(x):
insert(x)
colors.put(x, c)

color getColor(x, c):
if not contains(x):
throw NoSuchElementException
if x in colors:
return colors.get(x)
return "blue"

void delete(x):
colors.remove(x)
next.delete(x)

Figure 4-5:Pseudocode for &olorSet future SO

Furthermore, this model does not address the problem ofadjty server-to-server systems in
which every node is a client of every other node. In theseegyst some nodes will always be ahead
of others, so both past and future SOs are necessary.

Another approach is to convert an incompatible upgrade antmmpatible one by dividing it
into two stages. The first stage is a compatible upgrade #pddces the old type with a common
subtype of the old and new types. This stage also changegsctie use just the new type. This
upgrade can happen gradually, since non-upgraded cliantsige upgraded servers directly (i.e.,
without a past SO).

The second stage is a supertype upgrade that removes stqpibwt old type (i.e., the depre-
cated methods). This upgrade occurs after the clients hageaded (in the first stage) and so can
use a trivial past SO that disallows all calls.

The two-stage approach lets us avoid biasing our model thpast or future SOs and therefore
works for server-to-server systems. However, it relies tom dbility to define a common subtype
between the two types, which may be impossible if the twosymeve conflicting history proper-
ties, i.e., if calls had to be disallowed for the reasonsudised in Section 3.4.5. If no calls were

disallowed for such reasons, then the common subtype igjtstion” of the old and new types: it

75

www.manaraa.com

node node
learns of

learns of
X versiop 2) version3 X
version 1 é version 1 é version 1
object object object

t t t

vl calls vl calls v2 calls vl calls v2 calls v3 calls

node
upgrades to
version 2

vI+v2 calls v3 calls

node
upgrades to
version 3

versions
ffffffffff 1 and 2
| h

I) ! are retirgd X
! version3 ! version 3

| object | object

?

vI+v2+v3 calls v3 calls

Figure 4-6: The reverse-hybrid model. Future SOs (grey) are non-iears; past SOs (white) are in-
terceptors. Future SOs just implement their own versionst B®s implement their own and all previous
(non-retired) versions.

has the abstract states and methods of both types (possitdyned to avoid conflicts), and reflects
method calls on both states (according to the shadow méthods

The two-stage approach requires that we delay the secogel stdil all clients have completed
the first one. If we're willing to delay later upgrades, we age a much simpler model that al-
lows both past and future SOs to run as interceptors (Egreént times) and yet preserves modular
reasoning.

Figure 4-7 depicts the delay-hybrid model. In this moddlS&s run as interceptors (eventu-
ally). But as in the hybrid model, we cannot install more fat$O interceptors once there is an
incompatible SO in the chain, so we run them as non-inteotepihen this is the case. Unlike
the hybrid model, past SOs run as interceptors, so we cannduture SOs as interceptors at the
same time (because only one object can intercept callséarutrent type). Furthermore, we cannot
install later upgrades while a past SO exists, because 8t&sgacannot handle calls for those later
versions. Therefore, we must delay later upgrades untiptst SO is retired, i.e., untll nodes
have installed the incompatible upgrade. This means weyallvave at most one past SO.

The model is practical when the time between upgrades egdedtime it takes for all the

nodes to install an upgrade. This is likely to be the case doves clusters in which the service

76

www.manaraa.com

node node

learns of learns of

. I
versiop 3 ! . !
' version 1 |

(compatible)

versiop 2 |) !
' version 1 |

(incompatible) 3

version 1

object object | object

?

vl calls vI+v2 calls v3 calls

vI+v2 calls

node
upgrades to
version 2

v3 calls

version 1
is retired

vI+v2 calls

| I
! version 2 |
| object

v2+v3 calls

v3 upgrade is
delayed while
past SO exists

node

upgrades to

versiogl 3

version 3
object

?

v2+v3 calls

Figure 4-7:The delay-hybrid model. White SOs are interceptors; greyram-interceptors. Past SOs are

always interceptors, and at most one past SO can exist atea tim

provider can cause all the nodes to upgrade in the course @fvdburs, but this won't work if

clients can control when nodes upgrade.

If we want to avoid restricting the upgrade schedule in any {gther with delays or by up-

grading clients before servers or vice versa), then we neadra powerful simulation model. We

present such a model in the next section.

45 Notification Model

In this section, we propose a model that allows for powerdtpand future SOs at the cost of

requiring cooperation from the current object. The ideadiseflach object on a node (whether it is

an SO or the current object) to notify all the other objectdl@node when the object receives a

method call. This notification takes the form of a specialhodtcall on anotification interface

implemented by the other objects. The natification for a métim has the nameotifyM and has

the same arguments and return valuemaslhe purpose of the notification is to allow the receiver

to reflect the &ects of the method call in its own state; thefiieets are exactly as specified by the

shadow of that method on the receiver. Thus, notificatioasaty needed for mutators.

We don’t want to require that every object understand natifomis from every other object;

this would not be modular, and furthermore, we don’t know wi@ifications to expect from future

77

www.manaraa.com

vl v2 v3 v4 v5

past SO past SO object future SO future SO
o= | I S -
vl v2 v3|v3|v3 v4 v5
: notifi::ations T . :
vl calls v2 calls v3 calls v4 calls v5 calls

Figure 4-8:The notification model. Each object has three interfacesramal interface (in the middle) that
accepts calls from clients (solid arrows), a past notifioatinterface (on the left), and a future notification
interface (on the right) that each accept notifications fmeighbors (dotted arrows). The version humbers
on the interfaces indicate which mutators the interfacespts, e.g., “v2” means that interface accepts calls
or notifications for version 2 mutators. Not shown: each S& alan also call observers of its delegate (the
next object toward the current version).

versions when we implement the current object and future 88#ead, each object just understands
notifications for its own mutators and, in the case of SOsnthéators of the next object closer to
the current version. These are exactly the old and new typesipgrader must already consider
when defining an upgrade, so this design has good modularity.

Each object has three interfacesa@malinterface, which is called by clients;gastinterface,
which accepts notifications from the object of the next olkasion, and duture interface, which
accepts notifications from the object of the next newer versi he mutators for which the past and
future interfaces accept notifications depends on the kimbbject: the current object only accepts
notifications for its own mutators on either interface,, iits.past and future interfaces accaptifyM
for each mutatom of the current type. A past SO accepts notifications for ite omutators on its
past interface and accept notifications for the next newms'symutators on its future interface. A
future SO accepts notifications for its own mutators on itarl interface and accept notifications
for the next newer type’s mutators on its past interfaces Bniangement is symmetric, as depicted
in Figure 4-8.

When an object receives a call on its normal interface, it iffexlits state as needed, notifies
the object of the next newer version on that object’s pastfiate (if that object exists), and notifies
the object of the next older version on that object’s futureeiface (if that object exists). Those
objects in turn modify their state as needed and propagatadlification to the next newer and
older objects, respectively. Thus, notifications propagattward from the object that receives the

original call.

78

www.manaraa.com

But the notifications change as they propagate. For examsppgose the current object imple-
mentsColorSet (Figure 3-2, page 41), and the past SO implemémSet (Figure 3-1, page 33).
When the current object receives the daflertColor(x, blue), it simply callsnotifylnsertColor(x,
blue) on its two neighbors (the nearest past SO and future SO} Letisider just the past SO for
now. It modifies its own state according to the shadovineértColor on its type. But then it must
propagate the notification to the next older object, andabgct may not understanmbtifylnsert-
Color. That object is prepared for notifications on the past SQie t§ntSet). Therefore, the past
SO must translaténsertColor(x, blue) into a sequence of mutator calls on its own type, erg.,
sert(x), and notify the next older object as though those mutatore walled, e.g.notifylnsert(x).
Similarly, when the past SO receives a notification on it¢ fragrface, e.g.notifyDelete(x), it
must translatelelete(x) into a sequence of mutator calls on the next newer type (s1dhse, it's

alsodelete(x)) and notify the next newer object appropriately.

45.1 Disallowed Calls

The notification approach requires that shadow methodexpeessiblg(Section 3.6) andmple-
mentablgSection 4.3.1), because objects that receive a notifit&ioan inexpressible or unimple-
mentable method will be unable to translate the notificadind propagate it further. The automatic
disallowing discussed in Section 3.6 handles this probleninfexpressible methods: it disallows
calls to methods whose shadows are inexpressible or digalialls to those types that cannot re-
flect the éfects of those shadows. However, this does not address thieprdor unimplementable
methods. The simplest solution is to treat unimplementai@éods as inexpressible and disallow

them similarly, but this may be overly conservative. Wealkgnhis restriction is future work.

4.5.2 Implementing Notifications

The notification model may sound complicated, but it can b@émented quite simply. We demon-
strate how with an example.

Figure 4-9 gives pseudocode for the normal interface GblrSet future SO whose delegate
is anintSet. Figure 4-10 gives its notification interfaces.

The SO’s observers are implemented by calling methods dleisgate, just as in the previous

models. For exampleZolorSet.contains delegates tintSet.contains.

79

www.manaraa.com

class ColorSetFutureSO implements ColorSet:
ColorSetFutureSO(IntSet next, NotifyIntSet past, NotifyColorSet future):
colors = new Map() // empty map; means all colors are "blue"

void insert(x):
past.notifyInsert(x)
future.notifyInsert(x)

boolean contains(x):
return next.contains(x)

void insertColor(x, c):
if not contains(x):
colors.put(x, c)
past.notifyInsert(x)
future.notifyInsertColor(x,c)

color getColor(x, c):
if not contains(x):
throw NoSuchElementException
if x in colors:
return colors.get(x)
return "blue"

void delete(x):
colors.remove(x)
past.notifyDelete(x)
future.notifyDelete(x)

class Past implements NotifyIntSet:
// see next figure

class Future implements NotifyColorSet:
// see next figure

Figure 4-9:Pseudocode for the normal interface o€alorSet future SO

80

www.manharaa.com

class Past implements NotifyIntSet:
void notifyInsert(x):
future.notifyInsert(x)

void notifyDelete(x):
colors.remove (x)
future.notifyDelete(x)

class Future implements NotifyColorSet:
void notifyInsert(x):
past.notifyInsert(x)

void notifyInsertColor(x, c):
if not contains(x):
colors.put(x, c)
past.notifyInsert(x)

void notifyDelete(x):
colors.remove(x)
past.notifyDelete(x)

Figure 4-10:Pseudocode for the notification interfaces afalorSet future SO

The SO’s mutators are implementedfdiently from the previous models: the SO no longer
calls mutators of its delegate (in fact, thext reference does not allow mutations). Instead, all
mutations are propagated via notifications.

The SO is constructed with references to the notificatioarfates of its two neighbors: the
future interface of its past neighbor and the past interfafcés future neighbor. (If a neighbor is
missing, a stub interface that ignores notifications is stubed.) The SO implements iBast and
Future notification interfaces as non-static inner classes, nigagiich SO instance has an instance
of each inner class, and those instances can access ther&@te fields directly. Thus, the SO’s
past neighbor has a reference to Baat instance, and the SO'’s future neighbor has a reference to
theFuture instance.

The implementations of the three interfaces of the SO havehnmucommon. For example,
ColorSetSO.delete,Past.notifyDelete, andFuture.notifyDelete differ only in how they
propagate notifications. What's really going on here is #ath SO mutator can be thought of as
having three parts: a local implementation, a future natifan (which is trivial), and a past notifi-
cation (which requires translation to the past neighbgpe}. If the SO implementor provides these
three parts separately, a compiler can easily generatéitbe interfaces of the SO. Implementing

such a tool is straightforward; we leave it for future work.

81

www.manaraa.com

class IntSetWrapper implements IntSet:
IntSetWrapper(IntSet actual, NotifyIntSet past, NotifyIntSet future):
// nothing in constructor

void insert(x):
actual.insert(x)
past.notifyInsert(x)
future.notifyInsert(x)

boolean contains(x):
return actual.contains(x)

void delete(x):
actual.delete(x)
past.notifyDelete(x)
future.notifyDelete(x)

class Past implements NotifyIntSet:
void insert(x):
actual.insert(x)
future.notifyInsert(x)

void delete(x):
actual.delete(x)
future.notifyDelete(x)

class Future implements NotifyIntSet:
void insert(x):
actual.insert(x)
past.notifyInsert(x)
void delete(x):

actual.delete(x)
past.notifyDelete(x)

Figure 4-11:Pseudocode for a notification wrapper fotSet

82

www.manharaa.com

Figure 4-11 presents pseudocode for a wrapper that haruendtifications for the current
object, IntSet. The wrapper implements tHatSet methods by delegating to the-tual object,
and it propagates notifications to the neighboring past SDfature SO on their future and past
interfaces, respectively. The innermost past SO is iimtal with a reference to the current object’s
Past interface (as it€uture), and the future SO is initialized with a reference to theent object’s
Future interface (as itpast).

The benefit of using a wrapper is that we can support the natiific model without actually
modifying the current object. Furthermore, a compiler coedsily generate this wrapper given the

IntSet interface.

45.3 Discussion

The benefit of the notification model is that past SOs and é&ug&®s are equally powerful. This
affords us greater flexibility in scheduling upgrades, sin@rehis no inherent bias toward upgrad-
ing clients before servers or vice versa. However, the Aehiheel of this model is concurrency
control: without synchronization, notifications travelinp and down the chain may be interleaved

arbitrarily. We discuss this further in the next section.

4.6 Concurrency Control

So far, we have assumed calls are applied to a node in sona¢ ceeler, and each call is allowed
to complete before the next one begins. But in reality, a modg process many calls concurrently.
We want to allow such concurrency, because enforcing saatain can reduce performance and, if
calls block, can cause deadlock.

However, we don’'t want to dictate the exact method of coramnay control, because no solution
we provide can satisfy all applications. We considered igiiag various primitives, such as critical
sections or locks, but all of them have problems: they inioedthe risk of deadlock, and they are
too coarse-grained for some applications.

Our solution is to let the objects on a node—the current dlgyed simulation objects—implement
synchronization themselves. These objects can be runnamy calls in parallel, and they synchro-
nize them somehow. This might mean complete serializatien, a call completes executing on

all objects before the next call is dispatched to any objBct this is probably too strict for many

83

www.manaraa.com

applications, and we want to give upgraders the flexibildychoose their own synchronization
policy.

Implementing synchronization is straightforward usinggmeptors, because interceptors handle
all calls that #ect their state and so can control the order in which they pipdied. This makes the
hybrid model and its variants attractive for applicationattrequire synchronization.

Non-interceptors (such as past SOs in the hybrid model, kitteaSOs in the direct and notifi-
cation models) cannot control how calls are applied to tHelegates, so a non-interceptor cannot
execute an atomic sequence of calls on its delegate unkeskeltbgate provides some concurrency
control mechanism.

For example, suppose the current object implements a québhenethodseng anddeq, and
the future SO implements a queue with an additional mettieqR, that dequeues two consecutive
items. If the SO is an interceptor, it can implemelain2 simply by callingdeq twice on the
delegate and ensuring no othgq calls are in progress. But a non-interceptor cannot do this,
because another client could cadlg in between the non-interceptorteq calls.

One way to address this is for the delegate to provide sonm &frapplication-level concur-
rency control. For example, the delegate may provideckdeq method that locks the queue on
behalf of the caller for any number di&q calls, but allowsenq calls from other clients to proceed.
The non-interceptor can useckdeq to implementdeq?2 correctly, e.g.:

Pair deq2Q):

next.lockdeq()

el = next.deqQ)

e2 = next.deqQ)

next.releasedeq()

return new Pair(el, e2)
But if the delegate does not provide appropriate concuyrenatrol methods, then our only choice
is to disallowdeq2.

The problem of synchronization is worse in the notificationd®l. Notifications propagate in
all directions and may be interleaved, and there is no analeg an interceptor that can control the
order in which calls execute onftirent objects.

We might hope to address the problem with application-leegicurrency control, but this is
complicated. For example, an object that recetes? must notify both its neighbors of this call.
This is straightforward if the neighbors suppaeiti fyDeq2. But a neighbor might only understand
deq, in which case an auxiliary method likeckdeq is needed. As the notification propagates, the

sequence.of.calls-needed.to propagate fitscés can grow longer, and more synchronization will

84

www.manaraa.com

be needed to keep itdtects atomic. This is unlikely to work beyond a few objectsjchimeans
calls will need to be disallowed. This suggests that the prdyctical concurrency control solution
for the notification model is complete synchronization (ca# executes at a time), but this is too

inefficient for real systems.

4.6.1 Failures

What happens when a call fails in the middle of a sequencelisfroade by an SO to its delegate?
Depending on the specification of the method the SO was trigirgimulate, it may have to roll
back the &ects of the calls to the delegate that succeeded. For exasyplpose an SO implements
deg2 by callingdeq twice on its delegate, and the first call succeeds but thenslemoe fails. Then,
the entiredeg2 operation should fail, which means theq that succeeded must be undone.
Interceptors can implement these semantics by keeping &iatecord the results of partial
operations. For example, an interceptor can implementlaréatolerantdeg2 with a one-element

local bufer:

Pair deq2(Q):
if local == null:
local = next.deq(Q)
p = new Pair(local, next.deq())
local = null
return p

However, non-interceptors cannot keep such state, becailsenay go directly to the delegate and
observe partially-mutated state. Non-interceptors malyb&t able to implement failure-tolerant

sequences if the delegate provides methods to executecasenpiences of calls, i.e., transactions.
But if the delegate does not provide a way to implement at@aguences, non-interceptors must

disallow methods that require them, lieq?2.

4.7 Discussion

In this chapter, we have discussed several models for magiagnulation objects. No one model
is perfect, so dferent models are suitable forfiirent deployment scenarios and upgrade patterns.

Table 4.1 compares how well the various models support akdlesirable characteristics:
Future simulation Nodes can simulate future specifications well (i.e., fevscale disallowed).
Past simulation.Nedes.can.simulate past specifications well (i.e., few ealisdisallowed).

85

www.manaraa.com

Future Past Concurrency Modular

Simulation Model Simulation Simulation Control Reasoning No Delays
Interceptor . . . °
Direct . . . ° °
Hybrid o . o o o
Reverse-hybrid . . o . °
Delay-hybrid o . o . o
Notification . . . ° °

Table 4.1: How well the models for using simulation objects supporirdbte characteristics (listed in
the top row). Key: €) the model supports the characteristic wel) the model sometimes supports the
characteristic well; () the model supports the characteristic poorly or not at all.

Concurrency control Nodes can control the order in which calls foffdrent versions are applied.
Modular reasoning Defining an upgrade only requires understanding the old aaduersions.
No delays Nodes can upgrade as soon as their SF signals.

The two most powerful models are the delay-hybrid and natifom models. Both are modular
and provide good support for simulation. None of the othedet® support both past and future
simulation well, so certain scenarios will caus#idilties, e.g., incompatible upgrades in server-
to-server systems. In such cases, the system may expegengee degradation during upgrades,
because some calls will be disallowed.

Delay-hybrid provides adequate concurrency control fos 80he expense of sometimes delay-
ing upgrades. Itis a model to use if each upgrade tends toleteripefore the next one begins. The
notification model &ers the best flexibility and power, but it is not practical sgistems in which
nodes need to execute multiple calls concurrently. If delaye unacceptable and concurrency is

required, then the hybrid model is a good choice.

4.7.1 Reasons to Disallow

In Chapter 3 and throughout this chapter, we have discussestad reasons why calls to simulation
objects may need to be disallowed. We summarize these reasoe.
The first few reasons to disallow are independent of the sitimii model used; they depend

solely on the upgrade specification:

History Violations (Section 3.4.5; example: upgradimgtSet to GrowSet) Sometimes it is not

possible to reflect a call on both types without violating tiistory properties of one of the

86

www.manaraa.com

types. In this case, calls that would violate the propexiewould reveal the violation must

be disallowed.

Inexpressibility (Section 3.6; example: upgradirigtSet to GrowSet) When the shadow of a
method is inexpressible, either that method must be digatioor calls to objects that are

unable to reflect thefBects of that method must be disallowed.

Disallowing due to history properties is only a concern whanupgrade specifies (in terms of its
invariant and shadow methods) that tlféeets of a calmustviolate the history properties of one of

the types. This reason to disallow can be avoided by weagehiminvariant between the states of
the two types.

The next reason to disallow is not a requirement, but a choice

Implementation Complexity (Section 3.5; example: upgradifgrmServer to AclServer) Some-
times providing the full behavior of a type is more troublanht's worth. An upgrader may
choose to disallow certain calls of a type to simplify the iempentation of simulation objects
for that type, especially when disallowing those callsvalidhe SO to be stateless. This sim-
plifies not only the SO implementation but also that of thetfarm function, since it means

the TF operates only on the state of the current object.
The remaining reasons to disallow apply only to non-intetoes:

Interleaving (Section 4.3.1; example: simulati@plorSet on IntSet) When a call bypasses an SO
and goes directly to its delegate, the SO may be unable tardfle éfects of the call. In this
case, the SO must disallow calls that could cause its stdtedome inconsistent with that of

the delegate.

Unimplementablility (Section 4.3.1; example: simulatihggSetWithSize onIntSet) When an SO
receives a call, it must cause its delegate to reflect ffects of that call by calling that
delegate’s methods. If the method is inexpressible or ifdékegate’s type is behaviorally
incomplete, the SO cannot implement the call correctly andtrdisallow it. An analogous
problem occurs in the notification model when an SO is unabkeanslate a notification it

receives into notifications that its neighbors underst@et{on 4.5.1).

Concurrency (Section 4.6; example: simulatirdeg2 usingdeq) When an SO must make more

than one call to its delegate to reflect théeets of a call to the SO, it is possible that the

87

www.manaraa.com

delegate may receive other calls in between those made b$@héf this would cause the

delegate to reflect the SO’s call incorrectly, the SO mustlii® the call it received.

Atomicity (Section 4.6.1; example: simulatinpg2 usingdeq) When an SO must make more
than one call to its delegate to reflect tHeeets of a call to the SO, it is possible that some
of those calls may fail. This may require that the SO roll b#uk dfects of the calls that

succeeded. If it is unable to do so, the SO must disallow thé caceived.

Deciding which calls to disallow can befficult. Thankfully, there are several ways to simplify the
process. Disallowing due to interleaving is only needed wstate of the SO can become stale;
this is not a problem for stateless SOs. Disallowing due tcagency issues occurs only when
the delegate’s type provides ifBaient means to do concurrency control, but many types peovid
synchronization primitives in the form of application-é#vocking and transactions. Finally, most
of these reasons to disallow can be avoided altogether usiegeptors, and many of the models

discussed above allow SOs to run as interceptors most ointiee t

88

www.manaraa.com

Chapter 5

Transform Functions

After a node has learned of an upgrade, but before it stantsimg the new class, it implements its
current type with an instance of its current class and (deipgnon the simulation model) imple-
ments the new type with a future SO. After the upgrade, themimghlements the new type with an
instance of the new class and (depending on the simulatiatehmmplements the old type with a
past SO. The job of the transform function (TF) is to reorgarthe persistent state of a node from
the representation required by the old instance and fut@déoShat required by the new instance
and past SO, as depicted in Figure 5-1.

A transform function runs after a node has been shut downt spdrates only on a node’s
persistent state; the node’s volatile state is discardemtlell can recover from just their persistent
state, so this is safe. This design means nodes can manageolatle state however they like;

in particular, node software is not restricted to particdéanguages, as in dynamic updating sys-

Version i-1 Version i Version i+1 Version i+2

current
object
state

future SO
state

future SO
state

Before i+1 past SO
upgrade state

Transform

l

Function

current

future SO
state

After i+1
upgrade

past SO

object
state

state

Version i-1 Version i Version i+1 Version i+2

Figure 5-1: Transform function for a node upgrade from version i+d.i The TF implements the identity
mapping, so clients of both versions observe the same dtatelse TF runs as before.

89

www.manaraa.com

tems [46,48,54,57,58, 75]. Furthermore, node softward neeprovide explicit methods to export
its volatile state [29, 48,59]. Thus, our approach allowsdimnpler implementations of both the
node software and the TF.

The transform function implements the identity mapping tfo old and new abstract states:
the abstract state of the past SO (after the TF runs and theemeodvers) is the same as that of the
old instance before the TF ran, and the abstract state ofawdnstance (after the TF runs and the
node recovers) is the same as that of the future SO beforeRhai. Thus, clients of the node
do not notice that the node has upgraded, except that cliéritee new type may see improved
performance and fewer rejected calls, and clients of thetygdd may see decreased performance
and more rejected calls.

A transform function involves only local code; it may notlcalethods on other objects. We
cannot allow the TF to rely on other nodes being able to hahdlealls the TF might make, because
we can make no guarantees about when one node upgradegerétadinother. If the node being
upgraded needs to obtain state from another node (e.g.,@pli@ated system), it should transfer
this state after it has completed the upgrade, not durind Ead his helps avoid deadlocks that may
occur because nodes upgrading simultaneously attempttainottate from each other. This also
makes transform functions simpler to implement and reabonita

Section 5.1 presents our model for how nodes use their pemsistate, how they recover, and
how transform functions fit into this design. A transform étion must satisfy certain require-
ments so that it works properly in an asynchronous enviroriméth failures; we discuss these in
Section 5.2.

In Section 10.3.1, we discuss a related piece of future wimdremental transform functions
Incremental TFs transform parts of a node’s state as thegaessed, rather than transforming the
entire state at once. Incremental TFs can reduce node doenbut they add complexity to the

system and are not always feasible.

5.1 Base Model

We assume objects have access to persistent storage, Whichige either directly, e.g., by reads
and writes to disk, or through some storage layer such as ayfitem or database. Objects are

responsible for writing to persistent storage as they camymethods in order to ensure whatever

90

www.manaraa.com

stability is needed to satisfy their specification. They rabp run code in between method calls to
reorganize this storage.

We also assume that objects that use persistent storagelg@ecovermethod that is called
by the node (not by the upgrade system) when it has recoveredd failure. This method reads
the persistent state as needed to initialize the volatdee stf the object so that it can carry out
method calls. The recover method also “cleans up” the gerdistate to remove any partially-
executed operations. For example, the recover method ofabalse restores the database state on
disk from an on-disk transaction log, rolls back any palgtiakecuted transactions, and initializes
the database’s in-memory tables [80].

Our idea is to insert the transform function in the middlelaf tecovery process without inter-
fering with normal operation. When a node is ready to ingtallupgrade, the upgrade system sets a
persistentransform-flagand causes the node to restart. After the restart, the nasttkshwhether
thetransform-flagis set and, if so, calls the transform function for the pegdipgrade rather than
the recover method. The TF runs the old version’s recovehatketo bring the node to a pristine,
“newly-recovered” state. If there is a future SO that hasigsent state, the TF also runs its recover
method (as described in Section 5.1.1). Then, the TF reagsrthe persistent state as needed.
When the TF finishes, the upgrade system clearsrémsform-flagand runs the recover method for
the new version. In the common case when the TF does nothmgeed not run both the old and
new recover methods; we can just run the new one.

We have a persistettansform-flagso that recovery survives node failures. If a node fails vhil
a transform is in progress, the transform may be partialipgiete when the node recovers. In this
case, thdransform-flagwill still be set, so the node can simply restart the tramsf¢ghence our
requirement that TFs are restartable, as discussed iro8écf.3). This is a conservative approach,
since we may restart the TF unnecessarily if the node faitr #fie TF completes but before we
clear thetransform-flag Such an occurrence should be extremely rare, and an gestliTF can

detect that the transform is already complete and avoidmeaiut work.

5.1.1 Recovering SOs

This idea of recovery needs to be adjusted somewhat to takeaotount the fact that we have
simulation objects in addition to the current object, andheaf these objects may have its own

persistent state.

91

www.manaraa.com

Each object in the chain of objects must be given a chancectivee If an SO doesn’t have
persistent state of its own, its recover method does nothinifpe SO has persistent state, it must
manage a persistent store and must provide a recover medhddthe node must call the SO’s

recover method on restart.

Order

Objects must be recovered in the proper order. First theeatiobject is recovered. Then the future
SOs are recovered in version number order, starting fronatinent object and moving up the chain
of future SOs. The node provides the future SO with a referdadts delegate and (depending on
the simulation model) a flag indicating whether the SO is mgras an interceptor. This order
enables a future SO to call methods of its delegate as needfdrecovery.

After all future SOs have been recovered, past SOs are rezmbwi reverse version-number
order, i.e., most recent first. We recover future SOs firshab ¢alls made by past SOs to the current
object can be redirected to future SOs running as interceptibpast SOs were the interceptors, we
would recover them first.

Since we recover the current object first, we do not need tagdhés recovery code. However,
the upgrade system must recover the SOs before it allowsulittert object to receive calls from

any outside clients.

Initialization

When a future SO is first installed, it must create its pegsisstate, if it has any. The initial value
of a future SO’s abstract state is the result of applying tl@mpmng function to the abstract state of
the SO’s delegate at the moment the SO is installed.

We do not want the installation of a future SO to stall the naste we do not provide any
synchronization for the initialization of the SO. This meahe node continues to run while the
future SO initializes its state, and the initial value ofstate is a moving target. This limits the kind
of initialization that can be done.

The future SO may need to do some disk activity to prepareeitsigtent state. For example,
a ColorSet future SO may keep a persistent map from integers to coloidjtaneeds to initialize
this map to the default colors. Since the future SO does rnad ghance to examine the state of its
delegate when it is installed, it just initializes the dis&dks for its state to null. The SO initializes

its.state with actual values._lazily, i.e., as it observesestd its delegate in the course of normal

92

www.manaraa.com

processing. For example, ti@olorSet SO can wait to initialize the color for an integer until that
integer is accessed.

Lazy initialization is dfective when the future SO can construct its state piecemaal that of
its delegate, but not when the state must be constructetiaita. And while lazy initialization can
reduce the node’s recovery time, it introduces runtime lowad because the SO may need to access
the disk on each method call.

If a future SO cannot construct its state lazily, it shouldtw@initialize its state until it can run
as an interceptor (until then, the SO must disallow calls élcaess persistent state). Once the SO is
running as an interceptor, it can serialize its initialiaatamong the calls to the node. In particular,
the SO could block mutators to its delegate (but allow olershwvhile it initializes its state.

A past SO might also have persistent state, but this is nilised while the node is running.
Instead, the TF creates the persistent state for the past &dlition to creating the persistent state
for the new object. For example, if the node upgrades f@miorSet to FlavorSet, the TF creates an
integer-color map for the past SO in addition to creatingitteger-flavor map for the new object.
The TF could do this just by leaving the old persistent statésand creating a completely new
persistent state for the new object, i.e., the old perdisttaie becomes the persistent state of the

past SO. Alternately, the TF could create a new persistate sr the past SO.

5.2 Requirements

We have three requirements for transform functions. Rivstrequire that upgrades are transparent
to clients. Second, a TF must be able to run at any time, oéjust when the node is in a particular

state. Third, a TF must work across node restarts, sincedithe may fail while the TF is in progress.

5.2.1 Transparency

We require that clients do not notice when a node upgradess i3 helative to the specifications
that the clients use, and it includes whatever the spedditasay about persistence. For example,
if some of the object’s state is not persistent, that paitlalreset when the node upgrades.

After the upgrade, a client that was using the current oljeet uses the past SO. What the
client sees must be consistent with its previous uses of uhert object. For example, if node
upgrades fromGrowSet to IntSet, the client will not observe that any objects disappear fthm

set (as discussed in Section 3.4.5). This is either bechaspast SO disallows all observers (the

93

www.manaraa.com

invariant isOgg = Opew) OF because the past SO has persistent state that recorelehents of the
set (the invariant i©gg 2 Onew). IN the latter case, the TF must initialize the state of th&t |50 to
contain the recorded elements.

Similarly, a client that was using the future SO now uses timeenit object. What the client
sees must be consistent with its previous uses of the futDrd-8r example, if node upgrades from
IntSet to GrowSet (the reverse of the above), the client again will not obsdhat any objects
disappear from the set. This is either because the futureiSfiaved all observers (the invariant
is Oolg = Onew) Or because the future SO had persistent state that rectiideglements of the set
(the invariant is0gg € Opew). In the latter case, the TF must preserve these elemertts istate of
the current object.

Clients may observe changes outside the specification. rticylar, clients that start using the
current object may see better performance and fewer rejexchs, and clients that start using the

past SO may see degraded performance and more rejected calls

5.2.2 Runs At Any Time

A transform function must be prepared to run at any point ion@éa’s computation, although the TF
can assume that the node is in the “newly-recovered” statnwttruns. We might hope to control
when the TF runs using the scheduling function, but this mégluse the node to wait forever for
the node to reach a particular state. Instead, we requitethkal F work regardless of when it
is invoked; this gives us the flexibility to use schedulingdtions that time out or respond to an

external signal.

5.2.3 Restartability

A transform function must besstartableandidempotenti.e., it must work correctly when termi-
nated and restarted at arbitrary times and when run multiples [67]. We require restartability
because the node may fail while the TF is in progress.

Restartability is easy to implement if the node has enougburees to store the old and new
persistent states simultaneously: the TF treats the otd agread-only and writes the new state
to new storage. If the TF is restarted, it simply starts ovére upgrade system uses a persistent
transform-flag(Section 5.1) to avoid restarting the TF unnecessarily.

If the TF must overwrite the old state with the new state, thamnust keep some auxiliary

information-to-khew-hew-to pick up where it leftfip e.g., a log of what parts of the transform

94

www.manaraa.com

have been completed. When the TF restarts, it must be abl®dtuge the remainder of the new
state from just the non-overwritten parts of the old stathisTs straightforward when the state

is composed of records or files that can be modified in-plat¢éshmore dificult when the entire

storage layer must be reorganized. Existing work in recaivler file systems and databases can be

applied here [80, 91].

95

www.manharaa.com

Chapter 6

Scheduling Functions

Scheduling functions allow us to control how an upgrade meses through a system. Previous
work on automatic upgrades tended to focus on specific sgsteothey chose upgrade schedules
appropriate for their particular system design [33, 96,]1@ur design allows upgraders to define
different schedules for filerent class upgrades, thus allowing the upgrader to canadiitional
factors—like the urgency of the upgrade and how well nodesiggeroperate across versions—
in defining the upgrade schedule. We begin this chapter vetieral examples of the kinds of
schedules that can be implemented using scheduling funsctio

Scheduling functions often require information about th&tem: Which nodes have upgraded?
Which nodes belong to the same replica group? What is themutime? A contribution of our
work is an investigation of what kinds of information SFs desd an architecture to provide that
information to SFs. In particular, we introduce a centragingule database that stores the upgrade
status of every node in the system and per-node databasd®épatrack of which nodes are com-
municating most frequently. We also present a design thawsla scheduling function to access
internal state of the node’s object without a priori knovgedf which parts of the state the SF will
need.

We conclude this chapter with a set of guidelines for desigmjood scheduling functions.

6.1 Examples

In “Lessons from Giant-Scale Services” [33], Brewer ddsesi various techniques for handling
load, failures, and online evolution (upgrades) in giardls services. Giant-scale services are large
distributed systems that are typically composed of seggagiraphically-distinct data centers, each

96

www.manaraa.com

containing hundreds or thousands of machines. The focuseddrticle is how dterent techniques
result in diferent tradefi's of various service metrics.
Brewer describes three strategies for upgrading giarlesservices. We can express each of

these strategies as scheduling functions in our methogbolog

Fast reboot‘quickly reboots all nodes into the new version;” it is “sghtforward, but it guarantees

some downtime” [33]. This is not simply an eager schedulungction, since the goal of fast reboot
is to cause nodes to upgrade at the same time (not just as sabeyahear about the upgrade).
Instead, we can express fast reboot as a scheduling furtbidsignals at a particular time or one

that signals in response to a message broadcast by the epgrad

Rolling upgradeé'upgrades nodes one at a time in a ‘wave’ that rolls acrossltister’ [16,33,102].
We can express this approach as a scheduling function dpaalsiif its node has the lowest IP
address among the set of non-upgraded nodes. Brewer metiian“rolling upgrades are easily
the most popular” of his three techniques, but “one disathgm with the rolling upgrade is that
the old and new versions must be compatible because thegoeMist.” In our system, simulation
objects allow the upgrader to use rolling upgrades not ooysdme type upgrades (which is what

Brewer means by “compatible” here), but also for subtypeiandmpatible upgrades.

Big flip “updates the cluster one half at a time by taking down andadigg half the nodes at
once. During the ‘flip,” we atomically switch all tfiac to the upgraded half using a layer-4 switch
... As with fast reboot, only one version runs at a time” [38ye can express this approach as a
scheduling function that signals at a particular time, delireg on whether the node is in the first
half or the second half of the cluster. We would still requirkayer-4 switch to redirect tfac if we
want to avoid breaking connections when nodes upgrade, lammscmust be prepared for the loss
of volatile state due to node restarts. Both this approachfast reboot allow the system to avoid

cross-version communication, so these are useful wherpiipede does not admit good simulation.
Scheduling functions allow for many other upgrade schexule

Upgrade eagerly. The SF signals immediately, so nodes upgrade as soon as thayodd the
necessary files (rather than all at once, as in a fast reb®bts schedule is useful to fix a critical
bug, but it may disrupt service severely. The Gnucleus [€]d$tharing service uses this strategy,

since they want to avoid cross-version communication ancaffard to disrupt service.

Upgrade gradually.The SF decides whether to signal by periodically flipping imc®his schedule

can.avoid-causing.,toomany simultaneous node failures aleees, and so can limit how many

97

www.manaraa.com

nodes initiate state transfer at once, e.g., in a replicaystem. By adjusting the bias of the coin
and the period between flips, we can place probabilistic dswm how many nodes upgrade at once
and how long the upgrade will take. We demonstrate the uge8F in a real Internet deployment

in Section 8.2.3.

Upgrade after my servers upgrad@he SF signals once its node’s servers have upgraded. This
schedule prevents a client node from calling methods thatgtvers do not yet fully support. This

can be used if implementing a future SO for the serverfisodilt.

Upgrade all nodes of class C1 before any nodes of classT®2. SF for class C2 queries a cen-
tral database to determine whether all nodes of class Cluyaye@ded. This is like the previous

example, but it enforces a partial order over the upgradedl abdes in the system.

Upgrade only nodes 1, 2, and 5 until given the “all cleaiThis schedule lets the upgrader test an
upgrade on a few nodes [96]. The SF signals if its node is ortheofllowed ones; otherwise it

periodically queries a central node for the “all clear” sign

Upgrade when the node is lightly loadefihe SF checks the local time, CPU, amdhetwork load

to determine when to signal.

Upgrade without creating blind spots in the geographic latyof the system (e.g., in a sensor net-
work). The SF checks its local position via GPS and queries its beighto determine whether it

can upgrade without blinding the network. As in a rolling tgude, nodes order their upgrades using
some total order on nodes. Some parts of the network may &ikndant coverage, and nodes in

those areas may need to upgrade even when doing so would erbhhd spot.

6.2 Inputs

Scheduling functions may require severdfelient pieces of information to decide when to signal.
First, the SF may need basic information about the physwaémn which it runs. Next, the SF may
need to know information about the state of its node’s objeictally, the SF may need information
about other nodes in the system and, in particular, the nadtswhich its node communicates.
In this section, we present our architecture for providingexiuling functions with the information

they need.

98

www.manaraa.com

6.2.1 Node State

A scheduling function may consider the state of the physicale on which it resides, such as its
physical location, CPU load, network load, and local timd:s &ccess these resources via stan-
dard operating system interfaces. In addition to the abibvepperating system provides access to

pseudo-random number generators and periodic timers.

6.2.2 Object State

A scheduling function may consider the state of the currdijgat. In general, we cannot predict
what parts of an object’s state an SF might need. Instead, am w provide SFs with read-only
access tall of a node’s state via privileged observers. Restricting t8Fsad-only access prevents
them from violating the node’s specification by mutatingsitste.

Unfortunately, we cannot rely on the object to know whatestidte SF will need to access,
because the object was implemented before the SF was deBoeéh many cases we can predict
these requirements based on how the system is designedkdfople, we may expect that upgrades
for a replicated system will occur round-robin, so it makesse for the object to provide an observer
that returns identifiers for its fellow replicas. Also, we ynaant to avoid disrupting client sessions
when a node upgrades, so it makes sense for the object talpravivay to determine the number
of active sessions.

If the object does not provide the necessary observers,Rlute@d access the persistent state of
the node directly, e.g., via the file system. This is danggrbowever, since the object may mutate
its state while the SF reads it, so the SF may read inconsighures.

The SF might also be able to get the information it needs floerfature SO. For example, the
SO could provide an extra observer that returns the numbep@h connections. But this approach
only works if the SO is running as an interceptor, and it caqmovide information on the internal
state of the current object.

We propose a solution that allows an SF to observe arbitrartg of the object’s state without a
priori knowledge of which parts of the state the SF will ne€His is just a design; implementing it
is future work.

Our solution is to generate a privilegeteta-observefor each object automatically. The meta-
observer is a method that accepts a callback as an argumeming&ta-observer calls the callback,

passing as arguments read-only references to the fieldidautal private) of its object. The call-

99

www.manaraa.com

back in turn returns to the SF the values of the fields in whinehSF is interested. Thus fidirent
SFs can use flerent callbacks to obtain the information they need, andribta-observer can be
generated without knowing which parts are needed.

Alternatively, we could have generated an observer thaplsimeturnsall the object’s fields,
but this would be very in@cient if the state is large. It does notfEce to return references to all
the fields, because the SF is outside the object and so carnastsasub-objects via the references.
This is why the SF needs to be able to insert code into the bajeantime.

This solution is not perfect, because a callback can onlgmessub-objects of the main object
via their methods, and this may not provide access to thernrdtion needed by the SF. We might
imagine generating meta-observers for every sub-objettthis may be dficult for certain appli-
cations. Finally, this approach requires special coopardtom the application, so it will not work

for off-the-shelf applications.

6.2.3 Upgrade Database

A scheduling function may need to know the versions and etas$ other nodes, e.g., to decide
whether its node can upgrade in a round-robin schedule. Pphgeade database (UDB) provides
a generic, central store for such information. Upgradenayels) store their node’s version and
class ID in the UDB after each upgrade and every few minutealpw an administrator to monitor
the system). SFs can query the UDB to implement globallyrdioated schedules, and the upgrader
can query the UDB to monitor upgrade progress. The upgramiealso define additional upgrade-
specific tables in the UDB, e.g., a list of nodes that are ai#&d to upgrade, and can modify these

tables to control upgrade progress.

6.2.4 Node Database

In addition to the information in the upgrade database, adualing function often needs to know
which other nodes it node has communicated with recentlypkéfeide this information as a local
database on each node that contains the same kinds of resdiisupgrade database for the node’s
recent peers. Upgrade layers periodically exchange tkegian and class ID with other ULs and
store the information they receive from other ULs. Schedyfunctions can query this database for

information about recently-contacted nodes (includinggwkach one was last heard from).

100

www.manaraa.com

6.3 Guidelines

Designing a good scheduling function requires that the aghgyr consider several factors. How
urgent is the upgrade? How robust is the system to node éalfuHow well can nodes interoperate
via their simulation objects? Are there critical groups ofles?

As an aid to upgraders, we present basic guidelines for diegjggcheduling functions. In order

of priority, they are:

1. An SF must eventually signal, i.e., its completion mugtdepend on calls that could fail or

deadlock. (An SF can still make such calls, but it must be gmexgph for them to fail or stall.)
2. An SF should limit service disruption by:
(a) upgrading nodes that provide redundancy for a servid@farent times.
(b) upgrading nodes that provide a new service before upggatbdes that will use it.
(c) upgrading nodes that use a deprecated service beforadipg those that provide it.

3. An SF should signal as soon as possible.

We can guarantee that a scheduling function meets the fidgline by limiting the amount of time
that it is allowed to run. To this end, we require that eacklgpgrade definition include not only a
scheduling function but also an SF time limit. Choosing thiee limit presents its own fliculties,
but typically the upgrader can estimate how long an upgradeld take and can use that to choose
a conservative time limit.

Alternatively, we could require that each class upgradendigfn include a deadline (date and
time) and could cause nodes to upgrade immediately wherd#wtline has passed. This is es-
pecially useful if a node is disconnected for a long time amdeaveral upgrades behind, since
the expired deadlines will cause it to install the upgradesapid succession (regardless of their
scheduling functions).

We can relax 2(b) and 2(c) using simulation objects. Fut®es 8nable non-upgraded nodes to
provide new services before they upgrade, so we can igndewt{en we have good future SOs.
Past SOs enable upgraded nodes to provide old services, canwgnore 2(c) when we have good
past SOs. In peer-to-peer systems, every node is a serwerpaher node, so we cannot possibly
obey 2(b) or 2(c) when an upgrade adds or removes services, BiOs are vital for upgrading such

systems.

101

www.manaraa.com

Ideally, the system disruption caused by an upgrade wouldobmore than the expected rate
of node restarts in the absence of upgrades. This suggesta/éhmight want an “opportunistic”
scheduling function that triggers upgrades when nodeantesh their own, as in proactive recov-
ery [37], or when they quiesce [48]. If we can guarantee thaioales periodically restart, then this
approach obeys guidelines 1 and 2 but not 3.

The reason we have guideline 3 is because we expect thatrsyatil run most diciently when
all the nodes are running the same version, so we want noaeswe to the latest version as soon as
possible. But sometimes nodes may continue to run old vesdimr a long time, e.g., a client may
elect to use an old version rather than upgrade. In such ddsepressure on the client to upgrade
will increase over time, as later versions introduce incatifgilities with the old versions that cause

calls to the old versions to fail.

102

www.manaraa.com

Chapter 7

Implementation

This chapter describes Upstart, our prototype implememtadf the upgrade infrastructure. Upstart
is composed of several parts: the upgrade layer, the upgrader, the upgrade database, and
various supporting scripts and tools. As much as possibbeused existing programs and toolkits
to implement these parts. This reduced development timeraut the system easier to debug and
deploy, since many of the programs we use are installed auttadn most systems.

The main challenge in implementing the upgrade infrastimgcis making it generic while also
making it dficient. Like our approach, most previous approaches to dpggalistributed systems
require the ability to control the communication betweeme®m To do this ficiently, previous
approaches sacrifice generality: they require that usgrkeimment both their system and the upgrade
components using a particular language /ananiddleware system [21, 28, 29, 48, 54, 57, 59, 66,
90, 102]. In contrast, our prototype lets users implemeair thystem, transform functions, and
scheduling functions using the languages and tools thegmpm@ur only requirement is that nodes
in the system communicate by sending messages over sockets.

Achieving good éiciency with this level of flexibility is dificult. The upgrade layer introduces
overhead on every message sent or received, so naive irmpiations may be impractical for use
with the high-performance systems we want to upgrade. Weeaddhis challenge by implement-
ing the upgrade layer and simulation objects using evemeadrC++. To reduce the burden on
upgrade implementors, we provide libraries and code-ggioer tools that simplify the process of

implementing SOs for systems that use Sun RPC [99].

103

www.manaraa.com

We begin this chapter with a discussion of our design goatsthe tradefis we considered.
We then review our overall architecture and discuss eactpooent in turn. As we go along, we

describe the tools and libraries we provide to help userdament upgrades.

7.1 Design Goals and Tradeffs

We designed our prototype with two goals in mind. First, ibgld introduce little overhead on
system performance—especially when no upgrades are talkaeg, but also when nodes are com-
municating via simulation objects. Second, the prototyautd support upgrades for systems like
NFS [36], SFS [76], ChoyiDHash [42, 100], and Thor [71]. These are high-performatengje-
scale, data-intensive systems that represent a varietycbitectures (client-server and server-to-
server) and communication protocols (RPC and messag@&igass

Since the upgrade layer intercepts every message, our fiastngeans we need to implement
the upgrade layer in such a way as to minimize its per-messagdead. One approach would
be to link the upgrade layer into the application itself,.eap a replacement for the RPC library.
However, our second goal means there is no one library weegdadae: NFS uses Sun RPC via the
standard RPC library on Unix, SFS and Ch@rdash use Sun RPC via the SFS asynchronous RPC
library, and Thor uses a custom message-passing protoketefore, the upgrade layer must reside
at a level that all the applications have in common; we chogmaplement it as a dynamically-linked
library that intercepts system calls to the socket layer.

Placing the upgrade layer at this low level means our prpwinfrastructure can support up-
grades for any applications that use sockets. As a resulGameupgrade mostfibthe-shelf pro-
grams. But this also means the upgrade layer must marshalremarshal RPCs in order to interpret
them, and so incurs more overhead than if we were to inteategohigher level.

To compensate for this overhead, the upgrade handler andation objects are implemented
as event-driven €+ objects. This means they run extremely fast and perform weler high j1O
load (as is common in the applications of interest). Howeseent-driven G+ programs can be
more dificult to reason about than programs written in type-safedtied languages like Java. If
we were willing to restrict the set of applications we coesatl to, e.g., those that communicate via
Java RMI [79], then we could implement the upgrade layer aop-ih replacement for the Java
RMl library. This design would avoid the marshaling overh@acurred by our prototype and would

make it easier to program the upgrade layer and simulatigectd

104

www.manaraa.com

Node

current object

(unaware of the upgrade infrastructure)

Upgrade Layer

installs upgrades
and handles

cross-version calls Version i-1 Version i Version i+1 Version i+2
[TESLA handler] calls calls calls calls
A
A 4 \ 4
Upgrade Server Software Distribution Upgrade Database

serves configuration and
class upgrades to nodes

Network

serves cached copies

supports centralized
upgrade coordination

of class upgrades and monitoring

[Apache Web Server] to reduce load on

[PostGres DB]
+

[Coral CDN] [udb_logger]

Figure 7-1:Components of the Upstart prototype

the upgrade server

configuration

class upgrades

Thus, our prototype represents an extreme design poirdt f§exibility at the expense of over-
head and programmingftliculty. There are many other ways to realize our infrastmgtand other

design points will &fer different tradefis.

7.2 Overview

Figure 7-1 shows how the various parts of the upgrade infrefstre are implemented in Upstart.
This chapter is organized as follows. Section 7.3 discusespgrade server, software distribution
network, and configurations. Section 7.4 covers the upgdatgbase. Section 7.5 describes how
simulation objects are implemented, and Section 7.6, tlyeade layer.

Not all the features discussed in this thesis are implendemtéJpstart. We have not imple-

mented filters for.class.upgrades (Section 2.2), meta-vese(Section 6.2.2), or incremental trans-

105

www.manaraa.com

form functions (Section 10.3.1). We have not implementesl @dhtomatic disallowing described

in Section 3.6, nor provided a way for upgraders to designathods as inexpressible. We have
implemented the hybrid model for simulation objects démagtiin Chapter 4 (which combines the
interceptor and non-interceptor models), but we have nglémented the reverse-hybrid, delay-

hybrid, or notification models.

7.3 Upgrade Server

The main responsibilities of the upgrade server are to st@reonfiguration, class definitions, and
upgrade components for the system and make them availablgofenload. The configuration
(Section 2.3) is a small file that describes the system’salnithema and class upgrades (it just
contains references to the actual class definitions andadpgromponents). The class definitions
and upgrade components are large binary files or scripts.

Since the configuration, class definitions, and upgrade oomets are all regular files, we im-
plement the upgrade server as a standard web server (we @dh@\fiL2]). Nodes fetch the files
usingwget [17].

In a system with many nodes, the load of serving these files Imeagpo much for a single
server. Class definitions may be large (e.g., several megshgo even a few simultaneous down-
loads can exhaust the bandwidth of a single server. When aveesion is announced, all the
nodes in the system will attempt to download the new configamdrom the upgrade server nearly
simultaneously—this is okay, as the configuration is snilit then, all the nodes that aréfected
by the upgrade will attempt to download their new class d&dims from the upgrade server. This
means the upgrade server may see sudden bursts of requdatgécamounts of data.

Thankfully, the problem of dealing with bursty load is wetlidied. Most solutions address the
problem by replicating the desired content on several seraad balancing requests for content
among those servers [14, 39, 47, 86]. We use the Coral codiginbution network [47] to serve
downloads for class definitions and upgrade components. dM®tuse Coral to serve the config-
uration, because we want nodes to see the latest versior obtifiguration, not the one cached by
the CDN. The configuration is small, so the upgrade serverceahe it in memory and can serve
many simultaneous downloads easily.

Nodes must be able verify the authenticity of the configoratind class definitions; otherwise,

a malicious party could masquerade as the upgrade servepramidle false content. We address

106

www.manaraa.com

this by having the upgrader sign each file with its private ksinggpg [13]. Each node in the
system has a copy of the upgrader’s public key and can vérfsignatures after the download.
Since we require authentication of files, we could insteageleerved downloads using SSL
over HTTP. This works for files downloaded directly from thpguade server, but not for files
downloaded via the CDN. An alternative would be to use a sepatwork file system [23,42,49].
These systems can provide the same load-balancing berfeditS@N, good security, and an easy-
to-use file system interface; but they require the deploytroéa special file system client on every

node.

7.3.1 Configurations

The configuration of a system is represented as an XML filedalbstart.xml that resides on
the upgrade server. Using XML means that the configuratithuisan-readable and can be verified
automatically for proper syntax. The configuration in Figidr2 describes a system with three initial
classes of nodes—Web Servers, Doc Servers, and Index Seraad an upgrade that replaces the
first two classes. The attributes of each element (agiclass, library) correspond to those

described in Appendix A.

7.3.2 upcheck

Theupcheck utility verifies that a configuration has the correct syntar aatisfies various sanity
checks. It checks the structure of the XML using the Upstacuenent type declaration (DTD) and
checks the semantic constraints described in Appendix &\, (a.subtype upgrade defines a future
SO). For each field that names a filmcheck checks that the file exists on the local file system,
has the proper permissions, and is digitally signed. THeyu#lso reports the set of classes that
are defined for each version and complains if the an upgrasl@mavalidoldclass (i.e., a class
that does not exist in the schema preceding the upgradejire=it33 gives the output afpcheck

for the configuration in Figure 7-2 whamstart.xml has a bad signature amdndomized.shis

missing.

107

www.manaraa.com

<!DOCTYPE config SYSTEM "upstart.dtd'">
<config number="1">
<initial newclass="WebServer"
library="1ibWebServer.so"
code="WebServer.tar.gz"/>
<initial newclass="DocServer"
library="1ibDocServer.so"
code="DocServer.tar.gz"/>
<initial newclass="IndexServer"
library="1ibIndexServer.so"
code="IndexServer.tar.gz"/>
<version number="2">
<upgrade oldclass="WebServer"
newclass="TWebServer"
code="TWebServer.tar.gz"
type="sametype"
library="1ibWebServerSim.so
sf="roundrobin.sh"
sfMaxSecs="60"
tf="wstf.sh"/>
<upgrade oldclass="DocServer"
newclass="TDocServer"
code="TDocServer.tar.gz"
type="subtype"
library="1ibDocServerSim.so
sf="randomized.sh"
sfMaxSecs="30"
tf="dstf.sh"/>

</version>
</config>

Figure 7-2:A configuration file

* signature ’upstart.xml.sig’ does not exist or is invalid;
create it with: gpg --yes -b upstart.xml

- version 1 classes are WebServer, DocServer, IndexServer

- libDocServerSim.so must define a future SO for version 2

* file 'randomized.sh’ does not exist or is not executable

- version 2 classes are IndexServer, TWebServer, TDocServer

- done

Figure 7-3: Output ofupcheck. Lines preceded by - provide information; lines precedsd* report
errors.

108

www.manaraa.com

7.4 Upgrade Database

The upgrade database (UDB) provides a central store fomirdtion about the state of the system:
the upgrade status of individual nodes and tables indigatihich nodes are allowed to upgrade.
We have implemented the UDB as a PostGres database thagsesidhe upgrade server [101].

Theheaders table in the UDB contains a record for each node that conitsn® address, its
class ID, its current version, the minimum and maximum \arsi supports, and a timestamp indi-
cating when the record was added. Nodes insert new recottie idDB periodically or whenever
this information changes (e.g., because a node learns ot &ersion).

New records for a node do not overwrite its old records in tfi2BJThis way, we have a full
trace of each node’s availability and upgrade status owee.tiOf course, we cannot guarantee that
every node will have up-to-date records in the UDB, becayskaies may be lost due to node fail-
ures or communication problems. But nodes that are up areldr@ess to the UDB will eventually
insert new records. A background process can discard oivarold records periodically, e.g. once
a day or once a week.

Nodes do not write to the UDB directly, because this wouldseatoo much contention in a
large system. Instead, nodes send their header over UDRdb_&ogger process running on the
upgrade server that in turn inserts records in the UDB. Uhdexy load, some headers may be lost;
but this is okay, since they will be sent again later.

A malicious party could attempt a denial-of-service attagkinst the UDB by flooding it with
headers, thus preventing legitimate nodes from reportmgxbausting the space in the UDB. We
can protect against this attack by limiting the rate at whibudb_logger accepts new records for
each node. This scheme requires thdit 1ogger keep a small amount of state for each node in
the system.

A malicious party could also attempt to corrupt the data mtiDB by sending false headers,
e.g., headers that report incorrect classes or versionsoftes. We could protect against this attack
by requiring that nodes sign their headers with their pavay. Then, the attacker must compromise
a node’s private key to create false headers for it. Thismeehequires thatidb_logger have the

public key for each node and verify the signature for eacldbea

109

www.manaraa.com

7.5 Simulation Objects

Chapter 4 discussed several models for how to use simulabfcts. In Upstart, we have imple-

mented the hybrid model (Section 4.4). We have not impleatktite variants of the hybrid model

or the notification model, because these models were deslafter our prototype was complete.
We expect implementing these other models to be straigisial, because they just change how
nodes initialize SOs and dispatch calls.

A node does not necessarily have an object for every versdmexpect most new versions to
define class upgrades for just one or two old classes, so wduese classes are utected by the
new version simply direct calls for the new version to theegbjthat handles the previous version.
We say that a nodskipsthe versions that do noffact it.

An important feature of the hybrid model is that future SOsificompatible upgrades can run
as interceptors, which means they must handle calls forthetbld and new types. These SOs need
a way to distinguish between these calls, since there maytme rtonflicts. Our solution is for the
upgrader to actually provide two objectsbadge that intercepts for the old object andenamer
that intercepts for the new object. The bridge does the reakwit implements the old and new
specifications, but it may rename the new methods to avoiflictsn The renamer delegates calls
for new methods to the appropriate (renamed) methods orritthgety Of course, we could simplify
this process by generating the renamer automatically froemaming map.

Constructing the SO chains and dispatch tables for a nodmnidgrivial, given that a single node
may have skipped versions, bridges, interceptors, andmterceptors all at once. But the algorithm

to do this is reasonably straightforward, and we provide ipseudocode in Appendix B.

7.5.1 Programming SOs

Simulation objects are implemented as-€objects; Figure 7-4 presents t@ interface. This
interface is minimal; it just specifies tHrom_net method, which is how the SO receives data from
the network. An SO must parse the data it receives into messagd handle them as required by
its specification.

In practice, a simulation object implements a subclasSoahat provides a richer interface for
other SOs tharfrom_net. In our prototype, we focus on applications that use Sun RFT tb
communicate, so our SOs implement a subclasspaB0, which is given in Figure 7-5 along with

its superclassrpcObj. rpcSO is constructed with two parameters: apc_program (a runtime

110

www.manaraa.com

// a version number
typedef uint32_t versno_t;

// a callback for communicating with the network or application
typedef callback<void, ref<address>, data>::ref netcb_t;

class SO

{
public:
S0Q);
virtual “S0Q);
// called when data arrives from the network
virtual void from_net(netcb_t to_src, ref<address> from, data d) = 0;
virtual void *getThis() = 0; // needed to make downcasts work with DLLs

Figure 7-4.C++ signature for SOs

representation of a Sun RPC interface specification pratibbyerpcc [76]) and a flag indicat-
ing whether the network transport uses reliable streamsww@liable datagrams (this is needed to
marshal RPCs correctly)rpcS0 parses the data it receives \imom_net into RPCs and invokes
call for each RPC with the appropriate transaction ¥3d), procedure number, argument, and
continuation (which returns the reply to the caller). The @®@plementor need only provide an
implementation fokall.

The upgrade layer constructs an SO by calling a factory phaeedefined in the dynamically-
linked library (DLL) provided with the class upgrade for tf&0. Depending on the type of the up-
grade, the DLL may include up to three such factory procesjuteeatePastS0, createFutureSO
andcreateBridge. The signatures for these procedures are given in Figurec#€ateBridge
has the same sighature aseateFutureS0.

The upgrade layer passes the factory procedure a refereritee tSO’s delegate and, in the
case of future SOs and bridges, a flag indicating whether @é&S3unning as an interceptor. The
reference to the delegate is statically typedsas, but in the case ofpcSo, it is downcast to
rpcObj*. This allows the SO implementor to invoke thell method of the delegate directly.

The past SO and future SO closest to the current object caatiohethods of the current object
directly, because the SOs and the current object run in a&pprocesses, as depicted in Figure 7-7.
Those SOs delegate topaoxy object that implements the interface they expect (egcObj). A

proxy has several responsibilities:

111

www.manaraa.com

// a callback for returning method results
typedef callback<void, void *, clnt_stat>::ref rescb_t;

class rpcObj

{
public:
rpcObj(const rpc_program &p, const bool isstr);
virtual “rpcObjQ);
virtual void from_net(netcb_t to_src, ref<address> from, data d);
virtual void call(xid_t xid, ref<address> from,
procno_t proc, void *arg, rescb_t cb) = 0;
};
class rpcSO : public rpcObj, public SO
{
public:
rpcSO(const rpc_program &p, const bool isstr);
virtual “rpcS0Q);
3

Figure 7-5:C++ signature for Sun RPC SOs

// creates the SO for a given version
// given a pointer to the next object in the chain
typedef SO *createFutureSO_t(const versno_t vers, const bool isstr,
SO *next, bool interceptor);
typedef SO *createPastSO_t(const versno_t vers, const bool isstr,
SO *next);

Figure 7-6:Factory procedures for creating simulation objects

o for calls received via the network: forward these calls t® gipplication, and when the appli-

cation replies to these calls, forward the reply on to thginél caller via the network.

o for calls received via its methods: forward these calls &oapplication, and when the applica-

tion replies to these calls, send the reply to the objectrifate the call (via its continuation).

¢ for outgoing calls made by the application: forward thedésda the network, and when the

receiver replies to these calls, send the reply on to thacatn.

Managing these tasks requires some care; thankfully, wencglement proxies without any user-
defined code. We provide a class callgitProxy (Figure 7-8) that implements these tasks for Sun
RPC given the appropriatepc_program. rpcProxy implements th@roxy interface (Figure 7-9),

which.is.what-the .upgrade,layer uses to pass data from theorletand from the application to

112

www.manaraa.com

Node

current object
(unaware of the upgrade infrastructure)

TESLA LibC stub
A

Unix domain socket

4
Upgrade Layer
installs upgrades proxy
and handles
cross-version calls Version i-1 Version i Version i+1 Version i+2
[TESLA handler] calls calls calls calls

A
TCP or UDP socket

Figure 7-7:Process structure of the upgrade layer

class rpcProxy : public rpcObj, public Proxy

{
public:
rpcProxy(const rpc_program &p, const bool isstr,
netcb_t to_net, netcb_t to_app);
virtual “rpcProxy(Q);
virtual void from_app(ref<address> to, data d);
};

Figure 7-8:C++ signature for Sun RPC proxies

the proxy. The upgrade layer constructs proxies by callmgyctreateProxy factory procedure

(Figure 7-10), which is defined in the DLL provided by the ugudgr for the current class.

7.6 Upgrade Layer

The upgrade layer runs on each node and is responsible fangasldrsion numbers to outgoing
messages, stripping version humbers from incoming messadgpatching incoming messages to
the appropriate proxy or simulation object, allowing thexyrto communicate with the application,
exchanging header information between nodes, and che@iindgownloading, and installing new

upgrades.

113

www.manaraa.com

class Proxy : public SO

{
public:
Proxy();
virtual “Proxy(Q);
// called when data arrives from the application
virtual void from_app(ref<address> to, data d) = 0;
3

Figure 7-9:C++ signature for proxies

// creates the proxy for a given version

// given callbacks to communicate with the network and the application

typedef Proxy *createProxy_t(const versno_t vers, const bool isstr,
netcb_t to_net, netcb_t to_app);

Figure 7-10:Factory procedure for creating proxies

We decompose this behavior into two modules: tbgrade managedownloads and installs
new upgrades, and thgpgrade handlemanages messages and dispatching. Both modules run in
the same process and share state directly, but they run jpesage process from the application, as
depicted in Figure 7-7. This separation is important: if épplication has a bug (e.g, that causes it
to loop forever), the upgrade manager must be able to malgrgs® so that it can download and

install code that fixes the bug.

7.6.1 Upgrade Handler

The upgrade handler is implemented as a TESLA handler [9FLA is a dynamic interposition
library that interceptsocket, read, andwrite calls made by an application and redirects them
to handlerobjects. TESLA handlers can transform these calls to emhtdmeccommunication layer,
e.g., by encrypting messages or supporting session nigraffESLA also supports composing
multiple handlers, but we do not use this feature.

We initially considered implementing the upgrade handikeraa explicit TCP proxy, i.e., a
process that listens on the application’s port and forwaadls to the application itself, which listens
on a private port. This design fails for applications thatlenge their address (host and port) with
other nodes, because the application will advertise itsfiport instead of the proxy port. Peer-

to-peer systems like Chord [100] and Gnutella [15] are comexamples of such applications.

114

www.manaraa.com

TESLA is transparent to the application, so the applicatan listen on its usual port and
communicate normally. When the application creates a nekespTESLA creates an instance of
the upgrade handler and provides an interface that alloevh#imdler to write data to the network
or to the application. When the application writes data ® sbcket or when data arrives on that

socket from the network, TESLA notifies the upgrade handignwethod calls.

Protocol

The upgrade layer receives raw data from the applicationfilamd the network. It does not know
how to parse this data into messages, nor does it need tos@ssded in section 7.5, the proxy and
simulation objects handle the marshaling and unmarshalingessages. This means the upgrade
layer just needs to know which version humber to attach tgaing messages, and to which object
to dispatch incoming messages.

The upgrade layer associates a version number with the proctygach simulation object. When
one of the objects writes a message to the network, the updggdr prepends that version number
to the message. The upgrade layer encodes message bosrimapespending a length to each
message. Thus, the common-case overhead is 8 bytes (twie 4rtBgers) per message.

When the upgrade layer receives data from the network, disr&lze message length, the version
number, and the message itself. The upgrade layer can healtiefor any version betweeminv
andmaxv(inclusive), and it must dispatch each call to the appropridject (past SO, future SO,
or proxy). An SO may, in turn, make calls on the object to whtatelegates. If the version number
falls outside the supported versions, the upgrade layeadis the message and replies to the caller

with a small error code.

Running a node

When the software of a node is started for the first time, thgraghe layer needs to know the location
of the upgrade server and the initial class of the node. Wenasghe upgrade database is on the
same host as the upgrade server. We provide a script calethrt that takes care of the node

setup:

upstart host path classID

115

www.manaraa.com

This invocation tellaipstart that the upgrade server and upgrade database are ohdsastthat
the configuration and node software is in the directeayh on that host, and that the initial class

of this node isclassID. For example,
upstart banjo.lcs.mit.edu /space/upstart/chord Chord

tellsupstart toinitialize this node as claghord from the upgrade server on hdstnjo.lcs.mit.edu
and path/space/upstart/chord. upstart copies the configurationupstart.xml) from the
upgrade server, looks up the initializer for cla@srd in the configuration, downloads and installs
the code and library for clasgord, and starts the node softwangpstart assumes that the code
for the node includes an executable calkdhrt that actually starts and recovers the node soft-
ware; start is usually a script that passes the appropriate commaedaliguments to the actual
executable.

After the initial setup, the node can be restarted by invgkipstart with no arguments
(upstart saves its state in a local file calledate). In this caseupstart first invokesupstop
to shut down the node software, then checks whether anyfdrams are pending (as discussed in
Section 7.6.2), and finally restarts the node software.

upstop attempts to terminate the node software by invoking a usmriged executable called
stop. If this fails, upstop sendsSIGTERM and finallySIGKILL to the top-level process of the node
software. This is guaranteed to kill the top-level procdsg,in the case of multi-process systems,
some other processes may remain.

Once the node is running, it will keep running until it crastee it is explicitly terminated with
the commandipstop. If the node crashes and ti@START_RESTART environment variable is set,
the upgrade layer will automatically invokepstart to restart the node. This can help a node

tolerate buggy software until an upgrade is available.

7.6.2 Upgrade Manager

The upgrade manager is responsible for periodically pgplthre upgrade server for new configura-
tions, downloading new upgrades and libraries, instalitigre SOs on-the-fly, running scheduling
functions, installing new software, and running transfdamctions. With the exception of installing
new future SOs, the upgrade manager accomplishes theseltaspawning processes to handle
them fvget andgpg for downloads and the appropriate scripts for SFs and TFs)didtuss some

of the details in this section.

116

www.manaraa.com

The upgrade manager maintains a periodic timer that causepoll the upgrade server every
few minutes. But when the upgrade handler hears about sovelnggher than itgnaxy it causes
the upgrade manager to poll immediately. This ensures rdiggemination of new versions and
minimizes the time when the future SO is not yet installed.ti®a it does not poll too often, the
manager maintains a minimum polling period of five secondsa large system, this minimum
should be increased to limit the number of nodes that attéonmbll the upgrade server at the same
time.

The upgrade manager also causes the upgrade handler tdbaaiolyeaders on the messages it
sends to other nodes. A header includes the minimum, maxjraachcurrent version of the node
and its class ID, so it is too large to include with every mgssdnstead, the manager maintains a
record of when it last sent a header to each node and causestfager to piggyback a header once
per minute. This ensures that the overhead of header exelsiags constant, regardless of the rate
at which nodes communicate.

The manager keeps a local database (LDB) of the headers rebaived from other nodes;
scheduling functions can query the LDB to make local schiaduecisions. We have implemented
the LDB as a PostGres database [101]; it has the $maders table as the UDB, except the LDB
only contains headers from nodes that have contacted thkriode.

Writing headers to the LDB whenever they are received woeldilne-consuming and would
affect the critical path of each message; instead, the upgradeger forwards headers over UDP
to a localudb_logger process that runs in the background and stores the headesliDB (much

like syslogd).

Scheduling Functions

A scheduling function is implemented as a program that rars $separate process from the node
software. SFs can access the persistent state of the nathydifread-only), and they can access
the volatile state of the node via its observers. As we dsatign Section 6.2.2, we can provide the
SF with privileged access to the volatile state using méteovers, but we have not implemented
this yet.

Scheduling functions can query the LDB directly using SQEs $an query the central upgrade
database using SQL over SSH or a database-access prokecODBC.

117

www.manaraa.com

Transform Functions and Node Recovery

A transform function is implemented as a program that ruritsiown process. The upgrade man-
ager indicates that a transform is pending by writing thee'mdew version, new class 1D, and
an end marker to a file callegbstart.tf. The manager then invokegstart, which in turn
shuts down the node software, reads this file, invokes theoll thé indicated upgrade, records the
new version and class ID, removepstart.tf, and starts and recovers the new node software
(by invoking start). It is the TF’s responsibility to run the old class’s recowgethod to clean up
the persistent state (if necessary). If the node fails wihiée TF is running, it can simply invoke
upstart again when it recoversupstart will restart the transform ifupstart. tf is still there,

otherwise it knows the transform completed and will justtstae node software.

118

www.manaraa.com

Chapter 8

Evaluation

When evaluating our upgrade infrastructure, we might hopsnswer questions like:
¢ How long does an upgrade take?
e How disruptive is its upgrade schedule?
e How quickly does its transform run?
o How well does its simulation object work?

But every upgrade is ffierent, and the answers to these questions depend on thendyeiteg up-
graded and the nature of the upgrade itself. Furthermoggradies are rare, so whether a transform
takes one minute or two matters little in the common-case.

In quantitative terms, what really matters is the overhaagddsed by the upgrade layer on
application performance when no upgrades are happeningjisas the common case. We also
want to confirm that the additional overhead imposed by mmsimulation objects is small, since
otherwise we will never be willing to use them. Section 8.dgents experiments that measure these
overheads and show them to be reasonable.

We are also interested in a qualitative evaluation of how thielupgrade system actually works.

Section 8.2 discusses some of the upgrades we have actuglmented and run.

8.1 Overhead

To understand the overhead of our prototype, we measureuetiiermance of various applications

in.several.scenarios:- THgaselinescenario measures the performance of the application .aldre

119

www.manaraa.com

TESLAscenario measures the performance of the application mgnmith the TESLA “dummy”
handler on all nodes. Theftkrence betweelMESLAandBaselineis the overhead for interposing
between the application and the socket layer and for costeitthing between the application and
the TESLA process.

The Upstart scenario measures the performance of the application mgnwith the upgrade
layer on all nodes. The fierence betweedpstartandTESLAis the overhead for labeling messages
with version numbers, exchanging headers, and—most impilyt—data copying. Each outgoing
message is copied to a newflar so that a version number can be prepended to it; this cauld b
avoided using scatter-gathe®l, but TESLA doesn't support this. TCP communication ifféned
by rpcProxy andrpcS0 so that they can reassemble fragmented RPC messages. Mighidecond
buffer is unavoidable (due to RPC semantics), the first is unsacgsnd could be removed by
changing TESLA to support scatter-gathgD . This optimization is future work.

The final scenarioyith SQ measures the performance of the application with a null 8@e
server, i.e., an SO that just delegates. ThEedence betweeWith SOandUpstartis the additional
overhead of dispatching calls through the SO, unmarshalatg from the network into RPCs,
and marshaling RPCs back to the network (to pass to the afipl¢. Calls to SOs may also be
slower than normal calls, because SOs are dynamicallyelbatjects, so the compiler is unable to
optimize calls to SOs as well as it can optimize staticattkdd code.

We measure the performance of three applications in eacheot¢enarios listed above. The
applications have very fierent communication patterns. Null RPC a client issues small remote
procedure calls to a server one-at-a-time.TIDP data transfera client transfers a bulk data to a
server using TCP (no RPCs). DHash block fetcha client retrieves data blocks from a distributed
hash table composed of several servers; each fetch opeisttomposed of several small LOOKUP
RPCs issued sequentially, then several large FETCH RP@edss parallel.

Finally, we run these experiments both on a local gigabiemtbt (transfer rates of up to 125
MB/s) and on the Internet. The local network achieves very hgglieation performance and so

demonstrates the worst-case overhead.

8.1.1 NullRPC

We measure the latency of null remote procedure calls,RIeCs that have no arguments or return
values. A single client issues RPCs synchronously to assisgiiver. This application is extremely

lightweight, so this experiment measures the worst-casehead for using the upgrade layer.

120

www.manaraa.com

Figure 8-1 shows the latencies of null RPCs on a gigabit e#terThe upper graph has a box
plot for each scenario: each box encloses the middle 50%terfidaes for that scenario, and the
vertical lines extend from the minimum to the maximum latendhe dotted line connects the
median latencies of the scenarios.

The lower graph plots the cumulative distribution funct{@bDF) for each scenario. The y-value
is the fraction of latencies whose value is less than theluevarhus, a horizontal line gt= 0.5
intercepts each curve at the median value for the correspgrstenario.

The median latency ofESLAIs 21% greater thaBaseling Upstartis 205% greater thaBase-
line; andWith SOis 208% greater thaBaseline The overhead in th&pstart case is likely due
to the fact that every outgoing RPC isffered in the upgrade layer; if so, this overhead could be
removed with optimization. The additional overhead/Mth SQis relatively small; it is due to the
additional dispatching, marshaling, and unmarshalingedonpass the RPC through the SO. The
CDF provides more information: most of tBaselineandTESLAatencies are around 408, while
most of theUpstart andWith SOlatencies are around 80€. This suggests that the data copying
in the upgrade layer imposes a constant overhead of aroues4@nd the additional overhead
imposed by running with an SO is small.

The Internet experiments show that the overhead of the dpglayer disappears in a high-
latency network. Figure 8-2 shows the latencies of null Rf?@a a client at UC San Diego (UCSD)
to a server at MIT. The median latency Wfith SOis 1.1% greater thaBaseline and the other

scenarios are all within 1% daseline

8.1.2 TCP data transfer

We measure the latency of bulk data movement from a singlatdio a single server using TCP. We
are interested in how the throughput (data transferred pietime) is dfected by using the upgrade
layer.

Figure 8-3 shows the latencies of transferring 100 MB on algjiigethernet. The medidBase-
line throughput is 110 MBs; TESLA 109 MB/s; andUpstart 70 MB/s. This overhead is likely due
to the budtering done in the upgrade layer and, if so, could be removéd egtimization.

Figure 8-4 shows the latencies of transferring 1 MB on therhgt. In these experiments, the
server is located at MIT, and the client is located at UCSDe TedianBaselinethroughput is
378 KB/s; TESLA 377 KB's; Upstart, 392 MB/s. We believe this strange (but repeatable) increase
in throughput comes from an artifact in TESLA and the upgrider that prevents TCP from

121

www.manaraa.com

RPC latency (ms)

CDF

14

1.2

0.8

0.6

0.4

0.2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

]‘" i
1 | | |
Baseline TESLA Upstart With SO

|

3 Baseline

| TESLA -———-- .

! Upstart --------

S , . WithsSO

0.5 1 1.5 2

RPC latency (ms)

Figure 8-1:Time to do a null RPC on a gigabit LAN £40000)

122

www.manharaa.com

RPC latency (ms)

CDF

200 T T T T

150 -

100 -

0 | | | |
Baseline TESLA Upstart With SO

0.1

0.09

0.08 |

0.07

0.06 -

0.05 |

0.04 -

0.03 -

0.02

0.01 -

Baseline
TESLA -~ 7]
Upstart --------

With SO

90 95
RPC latency (ms)

Figure 8-2:Time to do a null RPC from MIT to UC San Diego<£hN0000)

123

100

www.manharaa.com

using an over-large flow control window and so enables it mdpacket loss and achieve higher

throughput.

8.1.3 DHash block fetch

We measure the latency of fetching blocks from DHash. DHashpeer-to-peer application that
implements a distributed hash table, i.e., a key-valueestdrere diferent servers store the values
for different keys. The values are 8 KB blocks that are stored as 1 K&ier-coded fragments,
which means a client actually downloads a block from sevezalers in parallel. A client locates
the fragments of block by looking up the servers respondimahat key, which involves issuing
several small LOOKUP RPCs to various servers. The cliemt ibsies FETCH RPCs in parallel to
these servers; the return values of the FETCH RPCs are theftagBents.

Our experiments use a DHash system composed of four semera single client that resides
on one of the servers. Each server runs 14 virtual serversa fotal network size of 56 virtual
servers. We store 256 8 KB blocks of random data in the systetmreeasure how long the client
takes to fetch each block (one-at-a-time).

Figure 8-5 shows the latencies of DHash fetches on a gigHigtreet. The median latency of
TESLAIs 22% greater thaBaseline andUpstartis 29% greater thaBaseline Thus, the bulk of
the overhead in this experiment comes from using TESLA, metupgrade layer. This is probably
due to context switching and data transfer between the TESbgess and DHash.

Figure 8-6 shows the latencies of DHash fetches on the lettehn these experiments, the four
servers are located at MIT, UCSD, Denmark, and Taiwan, aactlkient is located at MIT. The
median latency oTESLAIs 7.8% greater thaBaseline andUpstartis 12% greater thaBaseline
The overhead of TESLA and Upstart in the Internet is less thame LAN, but it is still significant.
Again, this is likely due to data copying.

8.1.4 Summary

We conclude that the overhead of our prototype should bepéaiole for many applications, but it
may be too much for applications that require very high tgiqaut. Optimization may fix this, but
in these more demanding environments, it may also make sense a specialized upgrade layer
that interposes at a higher level than our prototype doesraiyng the level of interposition, we
can eliminate the overhead of extra data copying, conteittkes, and redundant RPC marshaling

and unmarshaling.

124

www.manaraa.com

2 T T T
15 -
o
E
pa 1F —
£ ; 1%
c
©
0.5 _
0 1 1 1
Baseline TESLA Upstart
1 T — T T T T T /_,—--*I'
0.8 _
06 |- i i
" ,f
D !
O
0.4 -
0.2 _
Baseline
TESLA -~
; Upstart --------
0 1 1 1 1 1
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

transfer time (s)

Figure 8-3:Time to transfer 100 MB on a gigabit LAN £400)

125

www.manharaa.com

transfer time (s)

CDF

w

N

7 WT --------------------
| | |
Baseline TESLA Upstart
1 T
0.8
0.6
0.4
0.2 !
// Baseline
/,’ TESLA --————-
b Upstart --------
0 Z | | |
25 3 35

transfer time (s)

Figure 8-4:Time to transfer 1 MB from MIT to UC San Diego<£M00)

126

www.manharaa.com

fetch latency (ms)

CDF

16

14 |

12

[any
o
T

(o]
T

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Baseline TESLA

Upstart

Baseline

fetch latency (ms)

20

Figure 8-5:Time to fetch an 8 KB block from DHash on a gigabit LAN-{168)

127

www.manharaa.com

1000

800 - —

600 - T

400 -

fetch latency (ms)

200 —

0 1 1
Baseline TESLA Upstart

0.8

0.6 |

CDF

04

0.2

Baseline

1000 1500 2000 2500
fetch latency (ms)

Figure 8-6:Time to fetch an 8 KB block from DHash on the Internet7i88)

128

www.manharaa.com

8.2 Qualitative Results

Few upgrades actually require complex scheduling funstisransform functions, and simulation
objects simultaneously. Rather than try to create one gjiigapgrade that exercises all these com-

ponents, we evaluate each component separately usingesimpgtades.

8.2.1 Simulation Objects

To evaluate the dliculty of writing simulation objects, we created an upgraateafsmall application
called DocServer. DocServer stores a mapping from namedawuments,” which are just strings.
This mapping is persistent state; DocServer stores it ircal [database. Clients can call methods
on the server to add new documents, replace existing dodstrerd fetch documents by name.

The upgrade we implemented allows clients to add commentotoments. When clients
request a document’s contents, the comments are autoityasippended to it. Like the documents,
comments are persistent state.

The interesting parts of this upgrade are the simulatiorabj The new version introduces new
state to store the comments, and the future SO must maifigistate before the upgrade occurs.
Our implementation of the future SO keeps a mapping from gmu names to comments in a
local database. When the future SO receives a request to emftirment, it stores the comment in
the database; when it receives a request for a documentclitefe the document from its delegate
and appends the comments to the document.

The transform function for this upgrade simply merges thm@&alocument and name-comment
mappings into a single table that is used by the new versidboafServer. The past SO has no
persistent state of it own, so the TF does not need to do amyfbr it.

When the past SO receives a request for a document, it regiirestiocument from its delegate
and removes the comments. Since the delegate just retuingla string, we had to introduce a
delimiter between the document and the comments so thatsteS©O could remove the latter. If
such a delimiter were not provided, the past SO would havestlldw document requests.

The future SO implementation is 93 lines of€, and the past SO is 60 lines. In Python, the
same two SOs are 32 lines and 12 lines, respectively. Abdfibhaach G-+ SO implementa-
tion is boilerplate code that could be generated autonibtic®ne thing that greatly simplified

implementing the SOs was the use of a database with a simplemesface.

129

www.manaraa.com

8.2.2 Transform Functions

To evaluate the dliculty of writing transform functions, we created a TF thatla@én access control
list to every file and directory in a file system. This is donedascribed in Section 2.5, except
access rights are expressed in the AFS [6ll]idwka” format, and the TF also creates ACLs for
directories. The ACL format is that of SFSACL [64]: the firdtBbytes of a file’s contents contain
its ACL, which is a block of text that starts withCLBEGIN and ends witlACLEND. Each line in
between defines the permissions for a user or group. The ACkdoh directory is kept in a file
called . SFSACL in that directory.

The TF traverses the file system, adding ACLSs to files and tdiriss along the way. The initial
contents of a file’'s ACL are derived from the Unix permissiarighat file. Owner permissions
are mapped to an ACL entry that grants the same permissiotigtaiser; group permissions are
mapped to an ACL entry that grants the same permissions taytbap; and world permissions
are mapped to an ACL entry that grants the same permissichg &pecial usesys : anonymous.
This TF assumes that no additional ACL state is kept by theéuBO (as described in Section 3.5);
supporting this extension is straightforward.

Adding ACLs to directories is easy: the TF just creates th@priate. SFSACL file. But adding
ACLs to files is more dficult, since the ACL must be inserted at the beginning of edehTio do
this, the TF copies the file to a temporary location, writesfile’s ACL to the file’s original location,
then appends the the file’s contents to the ACL. Thus, theutixectime of the TF is dominated by
the time required to copy each file’s contents twice.

We implemented this TF as a 162-line Python script. The implatation was straightforward:
it uses theos.walk library function to traverse the file system, then transf®mach directory and
file as it is encountered. In Section 10.3.1, we discuss hasvkind of transform can be done

incrementallyto reduce node downtime.

8.2.3 Scheduling Functions

To see how an upgrade schedule works in a large system, wadgaja DHash system deployed on
PlanetLab [87] using 205 physical nodes with 3 virtual noglesh, for a total of 615 virtual nodes.
The is the null upgrade (it makes no changes to the servewa@}, so no SOs are needed. The
scheduling function upgrades nodes gradually: it flips adaacoin periodically and signals if the

coin is heads; we used a heads probability of 0.1 and a pefiBdrminutes between flips (this SF

130

www.manaraa.com

0.6

04

fraction of reporting nodes that have upgraded

O 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000

time since upgrade installed (s)

Figure 8-7:Cumulative fraction of upgraded nodes on PlanetLab. Facts out of 151 reporting nodes;
excludes 54 nodes that fail to report due to message lossdw failure.

is implemented as a 6-line Perl script). We set the time lioitthe scheduling function to 6000
seconds (100 minutes); by this time, we expect 97% of nodeawe upgraded.

Figure 8-7 depicts the progress of node upgrades as reportibe UDB. The fraction of up-
graded nodes increases smoothly up to 6000 seconds, whenpsjup to nearly 100% because
of the SF time limit. One node (not shown) does not reportigavipgraded until 16000 seconds
(4.5 hours) have passed, which means either its report t&J B was delayed that long, or the
node downloaded the upgrade more than 10000 seconds aftepginade was installed! (Our trace
for this experiment does not indicate which case occurr8dyeral other nodes never report at all,
which means either their software failed or their reportgeMest in the network (we have since
implemented a periodic retransmission to fix the latter fgot). Finally, while we intended to have
a client trace for this upgrade, the DHash client froze $hatter the upgrade began and never
recovered. We conclude that either DHash is not as robusiliards as we might hope, or the
scheduling function we chose was too aggressive. Furthmrgrents are warranted to determine

the cause of this failure.

1The probability that a node has upgraded aftseconds is % ((1- p)"$), wherep is the heads probability (0.1) and
sis the seconds between flips (180).

131

www.manaraa.com

From this experience, we learned much about the perils afingndistributed systems on the
Internet; and while our prototype works pretty well, it is feom perfect. Nonetheless, our design
made it easy to define these upgrades, and we believe furtrkron the implementation can make

it robust to the vagaries of large-scale distributed system

132

www.manharaa.com

Chapter 9

Related Work

This chapter reviews research and real-world techniquegréwiding automatic software upgrades
for distributed systems. Our annotated bibliography pfesi additional details on several of the
systems we discuss [20].

What sets our approach apart from all previous approachibstiurs igealistic andcompre-
hensive Our upgrade system works in environments where failurecammon, whereas previous
approaches stall when failures occur [21, 24, 27-29, 5966, Our upgrade model is modular
and does not restrict how people implement their systemgreds previous approaches require
a particular object system [21, 24, 27-29, 59, 66, 90, 102}r Methodology explains how to de-
fine the relationship between the typd$eated by an upgrade and implement these types using
simulation objects, whereas previous work falls well shafrthe level of expressive power we
provide [81, 93,97, 102]. We introduce a new way to define aggrschedules (using scheduling
functions) that, to our knowledge, appears in no previouskwd-inally, we describe an infras-
tructure that is generic and a prototype implementatioih phavides practical performance for real
Internet systems, unlike many previous approaches thdinaited to research systems.

We begin, in Section 9.1, with a discussion of systems thap@t mixed modei.e., systems
that allow objects running fferent versions to interoperate. These are the approach&tsctosely
related to ours, as they enable systems to provide servide whjects upgrade asynchronously.
However, none of these approaches provides as much exgrggsier as ours.

In Section 9.2, we discuss approaches that support a linfigied of mixed mode usingx-

tensibleprotocols. Such protocols are common in real-world sysiesimge they enable objects to

133

www.manaraa.com

upgrade asynchronously yet do not (necessarily) requipeeial infrastructure. Instead, the burden
of ensuring interoperability is on the protocol designer.

Then, in Section 9.3, we consider approaches that avoiddmixede altogether. Most real-
world and research approaches to upgrading distributeigrmgsfall into this category. All are far
more limited than our approach.

Finally, in Section 9.4, we discuss various approachesrfeugng the state of a system survives
upgrades. Our approach is unusual in that it preserves aryigtent state. Several approaches
preserve volatile state, and some are able to do this witfesarting the node. We also discuss

how memory-only systems can support extremely rapid ugggradthout losing state.

9.1 Supporting Mixed Mode

In Section 4.1, we discussed several models for supportirgdimode in distributed systems. We
review these here and provide more detail on the approadbsslyg related to ours.

PODUS [48] supports upgrades to individual procedures ipasgibly distributed) program.
Procedures can be upgraded asynchronously, and usededomierproceduredranslate calls in-
tended for the old version of a procedure into calls for the mersion. Unlike simulation objects,
interprocedures are stateless and cannot chain togetheppmrt multiple versions (Figure 9-1(a)).

The Eternal system [102] supports rolling upgrades foriceped CORBA objects. Replicas of
different versions can interoperate usmgppersthat translate calls between them. Like PODUS’s
interprocedures, Eternal’'s wrappers are stateless ambtahain together (Figure 9-1(a)). Further-
more, this work pays little attention to the semantics ofppers, and simply recognizes that they
can be useful to support asynchronous upgrades.

The work most closely related to ours is Senivongse’s “aumtutransparency” model for dis-
tributed services [93]. Senivongse describes how tomEeping operator$o enable cross-version
interoperation during distributed upgrades. Senivongepgses using chains of mapping operators
to support multiple versions (Figure 9-1(b)), using bacidgamapping operators to enable non-
upgraded nodes to support new versions before they upglikdéuture SOs), and deprecating old
mapping operators when they are no longer needed (likengfrast SOs).

Senivongse’s semantic model for nodes that support malttjles is “evolution transparency:”
clients should not notice when they are using an object ofsiame diferent than they expect. This

is much weaker than what we propose, as Senivongse’s modsl it capture the relationship

134

www.manaraa.com

Version 1 Version 2 Version 3 Version 4 Version 5

handler handler instance handler handler

Version 1 Version 2 Version 3 Version 4 Version 5
calls calls calls calls calls

(a) Unchained Handlers

Version 1 Version 2 Version 3 Version 4 Version 5

handler handler instance handler handler

Version 1 Version 2 Version 3 Version 4 Version 5
calls calls calls calls calls

(b) Chained Handlers

Figure 9-1:Unchained handlers vs. chained handlers. Each node (lacy@ supports calls at versions 1
through 5. Arrows indicate the direction of method callsetode runs an instance of version 3’s type and
has handlers for the other versions.

between dterent types. In contrast, our model provides invariants/beh the states accessible via
different types and guarantees on how calls to one type are egflentthe others. This lets clients
know what they can expect when they upgrade and change wypehthey use or when clients

running diferent versions communicate about the state of a node.

9.1.1 Schema Evolution

Many of the same issues that arise in upgrading distribugstems also arise in schema evolu-
tion [31, 32, 81, 97] for object-oriented databases (OODBS)r example, a computation in an
OODB may require that one object call the methods of anodwemn though one of the objects has
upgraded to a new schema, but the other has not. Some appsoahsform the non-upgraded
object just in time for the method call [31]. But others [8T] @se mixed mode: they allow objects

of different versions to interact by enabling objects to implemauitiple types.

135

www.manaraa.com

The Encore system [97] wraps each object with a version tafate (VSI) that can accept any
method call for any version of the object’s type. If the objeannot satisfy a call directly, handlers
in the VSI can substitute a response. Unlike simulation abjethese handlers are stateless and
cannot chain together (Figure 9-1(a)). As a result, the ramolb handlers grows quadratically in
the number of versions: each time a new version is defined hagalers must be defined for each
old version.

Monk and Sommerville’s system [81] uses “update” and “batk&d functions to convert calls
from any version to the version of the instance. Like simatabbjects, these functions can chain
together, so each new version requires only two new funstfbigure 9-1(b)). But unlike simulation
objects, these functions are stateless and so cannot iraptestateful behaviors.

Some schema evolution systems [32] usavs[108] to enable objects of fierent versions to
interact. Views are related to mixed mode systems in thatéinable a single set of base objects to
be accessed via multiple schema.

02’s view system [22] provides a comprehensive study of hawations made to one type (a
view type) are reflected on another (the base type) and so hels im common with our model for
supporting multiple types on a single node. In O2, mutatimsle to view objects are reflected
on the base objects viateanslationlayer. The database checks that the new values for the base
objects and view objects obey the view definition, and if mejgcts the mutation. This is similar
to how a simulation object must disallow calls whosteets cannot be reflected correctly on its
delegate. But an importantftirence is that the SO implementor must determine which talls
disallow, whereas O2 enforces adherence to the view defingti runtime. This is possible because
view definitions are given in a form the database can undatstnd the database can roll back the
effects of a transaction that contains a rejected mutation.

02 allows views to stack (i.e., the base of a view may be amotiesv), much as we allow
simulation objects to chain. O2 furthermore supports adfegews (i.e., diferent views may share
the same base). Our system restricts nodes to a linear ch&0®® so that upgrades can change

which type is implemented by the current object and whiclesyare implemented by SOs.

9.1.2 Related Approaches

Federated distributed systems [45, 78, 88, 94] addressasintiallenges as those posed by mixed
mode systems. Federated systems may need to transformgegssahey pass from one domain of

the system to another, e.g., a system may transform a mgnetiare from one currency to another

136

www.manaraa.com

as it is transferred betweenfi#irent countries. Unlike our work, these approaches prolite
information on the semantics of transformation.

Richardson [89] describes how to integrate wrappers (@aldpectyinto a type system, so that
a single object may evolve over time with new state and nevadieh Like simulation objects,
aspects are stateful. But unlike simulation objects, dspa® not constrained to maintain any
relationship between their state and that of the underlginigct. In particular, calls made via one
aspect may change the state of the underlying object witheutnowledge of the other aspects, so

the states of those other aspects may become out-of-syhc¢hait of the underlying object.

9.2 Limited Mixed Mode

Many systems, such as Google [34], Gnutella [15], InternediE[41], and the World Wide Web [82],
support a limited form of mixed mode via extensible protscdxtensible protocols can be thought
of as having two parts: a baseline protocol and a set of eixtenisAll nodes understand the base-
line protocol, and the system provides “acceptable sehising just this protocol. For example,
all mail agents support theo, From, andSubject headers, and these are enough to provide basic
email service.

Extensions are enhancements to a protocol that some subtbet modes in a system under-
stand, for example, the-Spam-Level email header. Nodes ignore extensions they don’t recognize
though they may forward messages that contain extensioothés nodes that do recognize them.
This means system administrators can introduce new beahaioextensions without disrupting
baseline service.

The problem with extensible protocols is that nodes musttfan correctly with or without the
extensions they recognize. This complicates softwargdeand an administrator can never rely on
all nodes in the system supporting a given extension. Theway to ensure that all nodes support
a new behavior is to change the baseline protocol, and thisres a real upgrade.

Some research systems [53, 83] use extensions to suppaddgsgto objects in distributed
systems. Govindan [53] proposes an active distributedice=ifADS) composed of cooperating
agents that can be extended by plugging in new message tarthe Information Bus [83] allows
objects to communicate using publish-subscribe, so abjettiferent versions can interact by
subscribing to just those messages that they understarmbrsd88, 106] have also advocated the

use of publish-subscribe to loosen component coupling asidcerreconfiguration easier.

137

www.manaraa.com

9.2.1 Compatible Upgrades

Another way systems support limited forms of mixed mode igdmyiring that new software ver-
sions be “compatible” with old versions. Compatibility nmsaclients of the old version can use
the new one transparently. This a limited form of mixed modeduse it does not allow upgraded
nodes to call methods of non-upgraded nodes. Thereforde Vtltian be used for client-server or
multi-tiered systems, this approach will not work for sert@server or peer-to-peer systems.

Compatibility does not simply mean that the new type hashedl mhethods of the old type.
Bloom [29, 30] defines “legal” (compatible) replacementshase that “preserve or invisibly extend
the continuation abstractions” of the original versiomsolr work, we define compatibility to mean
the new type of an object is a behavioral subtype [73] of tidetybe.

Several upgrade systems [40,74,95] leverage compatibibitto support mixed-mode but rather
to test (at runtime) whether a new object provides the sarhavwer as the old one. These systems
run the two objects side-by-side, dispatching calls to ba@thents continue to use the old object
until the system (or an administrator) decides that the nbjgab correctly implements the old
behavior and causes the new object to take over.

McCamant [77] describes how to predict problems caused bypooent upgrades before an

upgrade is installed by combining dynamic invariant desectvith a system’s test suites.

9.3 Avoiding Mixed Mode

Supporting mixed mode adds complexity to a system, and aoatplthreatens a system’s relia-
bility. Therefore, many systems strive to avoid mixed mogialtowing service to degrade during
upgrades.

System administrators often synchronize the software optaosnodes using utilities like
rsync [104] and package installers [1, 10, 18]. The system doeprmtide service while this
is happening, so administrators typically run these ig#itvhen users are inactive.

Centrally-administered software management system$[95296] provide better management
and monitoring of upgrade progress than the utilities noeretl above, but they do nothing special
to enable nodes runningftkrent versions to interact. Thus, service may degrade ahilepgrade
is in progress.

Many systems use custom techniques for upgrading theirsf88§. Google [51] upgrades

entire data centers at once and provides service by reidigectients via DNS to other, redundant

138

www.manaraa.com

data centers (that are not upgrading). Since all the nodagdetta center upgrade together, nodes
running diferent versions never communicate. This approach suppatisgol changes within data
centers but not between data centers.

CoDeeN [85] is a content distribution network deployed oaretLab [87] that upgrades its
nodes about twice a week, causing only about 20 seconds aftoioevper node. New versions are
simply copied to the nodes, and the software is restartegdothie new code. New versions are
typically compatible; on the rare occasions when a new @aris incompatible, version numbers
are used to distinguish new calls from old ones (which arectef).

Gnucleus [7] is a peer-to-peer file-sharing system thaedigsates upgrades eagerly by gossip.
Nodes upgrade as soon as they hear about new versions, ste@does not need to support
mixed mode. However, service may degrade (e.g., searchéitebomay fail) while the upgrade is
in progress.

Online games [2, 11] force clients to upgrade to the latestior before they can participate in
games. This results in delayed service to clients, butotralthe system to avoid supporting mixed
mode. Service is also interrupted when servers upgrade.

Reconfigurable distributed systems enable the replacepfaritject implementations in dis-
tributed object systems, such as Argus [29], Conic [66], rBUyR4], Polylith [59], Olan [27],
CORBA [21,28], C2 [84], and Java [90]. These approachesvallbole subsystems (collections of
objects) to upgrade together, but the new type provided lpaystem must be compatible with the
old one. Some approaches [21,24,27,28,59,66,84] istiatpdrts of the system that are upgrading
by “quiescing” the upgrading nodes dodthe links between those nodes and the rest of the sys-
tem; therefore, service degrades when large parts of theraygpgrade. JDrums [90] alleviates this
problem by upgrading objects lazily and keeping old versiaround so that old references continue
to work. Argus [29] and the Eternal system [102] use distebutransactions and totally-ordered
multicast, respectively, to serialize reconfigurationhie tomputation of a system, thus preventing
nodes of diterent versions from interacting.

IBM’s K42 operating system uses dynamic interposition tppgut hot-swapping (runtime re-
placement) of OS components [98]. In the common case, rpthiimterposed between callers and
OS components; interposers are installed dynamically bgifyiag a call indirection table. Inter-
position enables hot-swapping using the Read-Copy Up&aié&)j scheme: an interposed Mediator

blocks new calls to the component, lets the old calls draansfers state to the new component,

139

www.manaraa.com

then unblocks the calls. This scheme assumes that reqoestsoinponent are short-lived, so that

it is reasonable to block new calls while old calls drain arfdlethe component is replaced.

9.4 State Management

This section discusses how various approaches guararde¢hthstate of a system is preserved
across upgrades.

Many upgrade systems [29, 46,48,54,57,59, 102] suppottahsfer of state between versions
via abstract value transmission.e., they require that the pre-upgrade object export tisesas
an abstract data value and the post-upgrade object imperwvéttue to initialize its state. The
correctness of this approach derives from Herlihy and Ly&k@alue transmission technique for
abstract data types [56].

The problem with the value-transmission approach is it ireguthat software implementors
create the state export and import routines. Some appreadteviate this problem by providing
tools that automatically generate these routines [57,@3, 1

Our approach takes advantage of the fact that robust sygigitslly preserve their state in
persistent form so that the state survives node restartsteldre, an upgrade can transfer state be-
tween versions simply by changing the persistent state ofla from the representation required by
the old object to that required by the new object. This apgtaaquires no additional routines be-
yond the recovery routines that the implementor must ajrgadvide. Furthermore, this approach
is more likely to capture the complete state of a node thanevathnsmission, because persistent
state is used regularly for recovery, whereas imjeagort may miss some state.

The problem with transforming persistent state is that #iasv. One way to avoid this problem
is to avoid using persistent state altogether. SystemsGigegle [34] and SSM [70] keep their
entire state in memory and provide reliability using regtion. In these systems, a node can restore
its state from a replica in just a few seconds over a gigabiereet. By restarting nodes in rapid
succession, these systems can upgrade with very little tiimen

However, memory-only systems are expensive if the staterglarge: they require thousands
of nodes (each with a large memory), a high-speed networtkadang-lived backup power supply.
To survive catastrophic failures, these systems requirdipfeudata centers, and these data centers

may need to upgrade independently (e.g., for testing) [51].

140

www.manaraa.com

Dynamic software updatinf#6, 48,52, 54,57, 58, 75] enables nodes to upgrade the& and
transform their volatile state without shutting down. Tédechniques are typically language-
specific and require that the implementor provide extrarmgttion to enable programs to be up-
dated, such as “reconfiguration points” that identify whiaréhe program reconfiguration can take
place. We chose aftierent approach because upgrades are rare and failuresnaneoro it is okay
to discard volatile state when a node upgrades, thereforeawavoid the complexities of dynamic

updating. Nonetheless, these approaches are complesnémtanrs and could be used to reduce

downtime during upgrades.

141

www.manharaa.com

Chapter 10

Conclusions

Long-lived distributed systems must evolve with changechhologies and requirements. But sys-
tem evolution must not disrupt service, as users increbsiraly upon these systems as critical
resources. Existing approaches to upgrading distributetkms are unsatisfactory: they disrupt ser-
vice during upgrades, restrict how systems are implemeiated restrict how software may evolve.
This thesis describes a neautomatic software upgrade systéhat supports unrestricted soft-
ware changes for distributed systems and enables thossrsyth provide service during upgrades.
We make two major contributions: a methodology for definipgrmades and an infrastructure for
deploying upgrades automatically. Together, the methagoland infrastructure provide a com-

plete, practical solution to the problem of upgrading Idivgd distributed systems.

10.1 Methodology

Our approach allows nodes in a system to upgrasigrchronouslyi.e., independently and at any
time. This enables upgrades todmheduledo that the system can provide service while an upgrade
is in progress. Our approach leverages the fact that lamgtlsystems areobust they tolerate
node failures and allow nodes to recover and rejoin the syséad furthermore, nodes keep their
important state on persistent storage so that it survivikgda. This means the upgrade system can
restart nodes that need to upgrade and discard their eotdéte.

The key challenge for our approach is that there may be loniggse of time when a system
is in mixed modgi.e., when diterent nodes are runningftirent software versions and yet need
to communicate. To address this challenge, our approachlemaodes to implement multiple

types simultaneously: one for each version that clientshingxpect. This allows each node to

142

www.manaraa.com

interoperate with other nodes as though all the nodes inytbters were running the same version,
while in reality nodes may be separated by several versions.approach isnodular. defining an
upgrade only requires understanding the new and currestorer of the system software.

Enabling a node to implement multiple types requires a new toaspecify the relationship
between two types; this is described in Chapter 3. Thisiogiship defines how éierent clients
interacting with the same node viaddirent types see thdfects of one another’s actions. This also
allows clients to know what node state they can expect to semhey upgrade and start using a
node via a new type.

The dfects of calls to one of a node’s types must be reflected onsatyjites, but sometimes
this isn’t possible because of incompatibilities. In suakes, a node mudisallow calls that would
violate these requirements, i.e., the node must cause tlatiseo fail. Clients are prepared for such
failures and work around them when possible. Thus, systemslegrade service gracefully when
upgrades are incompatible, rather than halt.

A node implements multiple types usisgnulation objectswhich are discussed in Chapter 4.
A simulation object is an adapter that implements one typeddggating to another. Simulation
objects can have their own persistent state and so can inreptemore powerful behaviors than
the adapters proposed in previous work [48, 81,93, 97, IDRferent designs for using simulation
objects dfer different tradefis in terms of the behaviors they can simulate, so choosingighe
design depends on how a system is likely to be upgraded.

An upgrade must preserve the state of a system from one wdrstbe next; Chapter 5 explains
how this is accomplished usirigansform functionsA transform function reorganizes the persistent
state of a node from the representation used by the old saftteathat used by the new software.
This transformation is transparent to clients: they seestitae state after the upgrade as they saw
before, regardless of whether they were using the old typlkeonew one.

How an upgrade is scheduled depends on a variety of factmhiding a system’s physical
organization and the relationship between the old and néwaie versionsScheduling functions
provide a powerful way to implement a variety of upgrade sitihes, as discussed in Chapter 6.
Our system provides several sources of information to agthreduling and monitoring upgrades,

including a centralipgrade databasthat stores information about each node’s upgrade status.

143

www.manaraa.com

10.2 Infrastructure

The components of an upgrade—simulation objects, tramsfonctions, and scheduling functions—
describe how nodes move from one version to the next and sumppdtiple types. But this is only
half the solution; actually deploying upgrades and engtdisystem to support mixed mode requires
anupgrade infrastructure

The upgrade infrastructure is a platform for distributedteyns that deploys upgrades automati-
cally and handles cross-version communication. A cenglade servestores upgrade definitions
and makes them available for download. Per-noggrade layersiownload and install upgrades
and handle cross-version messages by dispatching thera aptitopriate simulation objects. The
upgrade infrastructure is transparent to the system it@tg@and requires no special changes to the
system software.

Chapter 7 describes Upstart, our prototype implementaifahe upgrade infrastructure. Up-
start is generic: it works with any system that uses socket®mmunicate. Our implementation
includes libraries that make working with Sun RPC [99] apgtiions particularly convenient, but
Upstart works just as well with other protocols and even ravPTstreams.

Upstart is practical: its overhead is reasonable for alltbatmost demanding applications, as
shown in Chapter 8. We have evaluated Upstart with smalagdications and large, complex peer-
to-peer systems on high-speed local networks and on theéitdJpstart has no inherent scalability

limitations, as load on the central upgrade server is ated using a software distribution network.

10.3 Future Work

There are several directions for extending this work. Ortb@imost obvious is to improve Upstart’s
usability. Currently, deploying an upgrade involves etjtconfiguration files and running several
scripts; this process could be made much more natural witetieols.

The most interesting areas for exploration involve extegdiur approach to be mordhieient,

more robust, and more general. In the following sectionsdiseuss several such areas.

10.3.1 Incremental Transform Functions

A transform function may take a long time to execute if a nedgate is large or if the transform

is complex. This time can be reduced usingrarementalransform function. An incremental TF

144

www.manaraa.com

transforms pieces of the state on demand, i.e., when thegcasssed by the node’s object. This
has two benefits: the node spends very little time unavailéhe TF just needs to mark the state as
“untransformed”), and the node only spends time transfognsitate that it uses.

An example of an incremental TF is changing the represemtatf files in a file system (e.g.,
adding an access control list to each file, as described itidae®.2.2). The TF only transforms a
file when the new class (e.g., the file server) attempts tosadbat file.

Incremental TFs have disadvantages: they are more compdexrtormal (“eager”) TFs, and
they introduce runtime overhead when the object accessesaite. Furthermore, transforms that
must read the whole old state (in the old representationyddyze the new state cannot be incre-
mental.

Incremental TFs make sense for state that has many indepepees (e.g., files in a file
system, records in a database, or objects in an OODB) thaeaeim be transformed quickly. A
possible approach to implementing incremental TFs is terbgye existing support for automatic
transformation in persistent storage systems, e.g., laagraa evolution in OODBs [31]. Thus,
the transform function for a node upgrade can be implemeageal schema change for the storage

system used by the node.

10.3.2 Dealing with Errors

The most frightening thing about upgrading a system is ttssibdity of introducing errors [105].
Clearly, such errors may come from the new implementatistaifed by the upgrade. But an
automatic upgrade systenffers two more sources of errors: the upgrade definition (tedualing
function, simulation objects, and transform function) dhe upgrade infrastructure itself. In this

section, we present ideas for how to deal with these thregskih errors.

Errors in the new implementation

A simple way to fix a buggy implementation is to run a subsetjupgrade that replaces the buggy
implementation with a good one. But this takes too long, beeahe upgrader has to fix the bugs
and define the new upgrade, and all the while the system isdangvbuggy service.

People in industry seem to agree that automatic upgradersgsshould provide the ability to
undo or “roll back” an upgrade when an error is detected [43.105]. Many systems support
upgrade undo usingtaging[33, 40, 95]. The idea is that the new implementation runs special

staging.area.on.each.node until the administrators determimether it is working correctly. If

145

www.manaraa.com

the new implementation is okay, then the nodes move it froenstging area to the “real” area.
Otherwise, the nodes revert to the old implementation.

Staging is simple to implement and makes it easy to revek twaan old implementation, but it
requires that nodes have enough storage space for bothdfamdinew implementations and their
associated state. It is important for the old and new implaat®ns to each have their own state,
because the new implementation may need to transform teststa new representation and, if the
new implementation is buggy, it may corrupt its state.

One way to avoid the extra overhead of keeping two copieseohtide state is to instead keep
a log of state changes made by the new implementation. Ifristaut the new implementation is
buggy, the node can use the log to undo the changes to the state

In either case, reverting to the old version causes a nodestothe fects of all operations that
occurred after it started running the new (buggy) impleratoh. Given a log of those operations,
it may be possible to “replay” them on the old (good) implemagion and restore theirfiects [35].

If old implementation does not understand the new operstigplaying may require a simulation

object to convert the new operations to old ones.

Errors in the upgrade definition

Our approach to upgrading distributed systems requirdstieaupgrader provide several pieces of
code: scheduling functions, simulation objects, and faans functions. If these have bugs, then
the upgrade may not work, may disrupt service, and may evenjtcstate.

Buggy scheduling functions are not too serious, since titeeensure all nodes eventually up-
grade. Buggy simulation objects and transform functiomsraore serious problems, as they may
destroy or corrupt the state of a node (while SOs cannot pbthe state of the current object di-
rectly, they can still mutate its state by calling its methodstaging can alleviate this problem, as it
makes it possible to undo a buggy upgrade and restore therupted state. If nodes do not have
enough room to store both the old and new state, we can insfEaedde just a few nodes to test the
transform and keep backups of their state on replicas.

To reduce the occurrence of bugs in upgrade definitions,fgeagle system should provide tools
for testing upgrades and checking the correctness of themdpgcomponents. Simulation objects
and transform functions have well-defined specificationsdeveloping techniques for checking

that they meet these specifications is an interesting areadearch. (Of course, the upgrade speci-

146

www.manaraa.com

fication itself may also have bugs!) McCamant [77]'s teclies|for predicting problems caused by
component upgrades might be useful to help determine whath80 satisfies its specification.
Scheduling functions do not have well-defined specificatidhowever, one can often express

LT

an upgrade schedule as a set of constraints, e.g., “upgesders before clients,” “upgrade server
replicas at dierent times,” and “upgrade clients at night.” It seems gmedo use such constraints
to check or even generate the scheduling functions for aradeg

This leads us to the question of whether we can also gendratether upgrade components.
Previous upgrade systems provide support for generatamgform functions [57, 68, 102] (but not
for persistent state) and wrapper functions [93, 102] (Whace similar to simulation objects, but
less sophisticated). But most of these approaches justaiengkeleton code, and none provide
assurances on the correctness of the generated compot&etsly, further research is possible

here.

Errors in the upgrade infrastructure

Problems with the upgrade server, software distributidmoek, or upgrade database can be danger-
ous, but most such errors are likely to delay upgrades rélizer cause any real damage. However,
problems with the upgrade layer can be disastrous, as thég dsrupt communication throughout
the system and corrupt the software and state of nodes.

Repairing such problems requires replacing the upgrad® @y every node in the system. This
is like an upgrade, except we cannot use the upgrade layer itb bhstead, we need a simple and
reliable daemon process on each node that enables us tbriiestaipgrade layer software on every
node. This daemon does not intercept node communicatiotinese can be no simulation objects
for this upgrade. This means we need to minimize the periathguwhich nodes are running
different versions of the upgrade layer; we do so by running thigade eagerly.

Each node’s daemon periodically polls the upgrade servdetermine whether a new version
of the upgrade layer software is available. The upgrader legesion (UL version) is distinct from
the system software version, and upgrade layers include theversion in the headers that they
exchange periodically. When an upgrade layer receives @ehneeghose UL version diers from its
own, it notifies its daemon of the new UL version (this is justaptimization, since the daemon
also polls the upgrade server).

When the daemon learns of a new UL version, it downloads theUWie software (and an op-

tional UL transform function) from the software distribomi network, shuts down the node, installs

147

www.manaraa.com

the new UL software, runs the TF, and restarts the node. Tbisegs is quick and sweeps rapidly
across the system; nonetheless, it will disrupt service.

If the upgrade to the upgrade layer is not urgent, we will waldss disruptive way of deploy-
ing it. We can accomplish this by allowing UL upgrades to ulg scheduling functions and by
enabling ULs of diferent versions to communicate. It does not seem necessasetsomething
as sophisticated as simulation objects for this; insteaslcould use something simpler but less

powerful, like the extensible protocols discussed in $&c8.2.

10.3.3 Extending the Model

There are several ways to extend our upgrade model to suppoetkinds of upgrades and systems.

Filters

Our discussion has assumed that a class upgrade replamesaices of an old class with instances
of a new class. In Section 2.2, we proposed that an upgraded oestrict a class upgrade to only
some nodes belonging to the old class usirifer. In this section, we discuss some of the issues
involved in supporting filters.

Filters complicate how a node determines whether iffiscied by an upgrade. Without filters,
a node just checks whether its current class matches thdadd of any class upgrade in the next
upgrade. There will be at most one class upgrade whose @d piatches, so there is no ambiguity.

With filters, there may be multiple class upgrades tHEdch the same old class. A node deter-
mines which class upgradéfects it by checking whether the filter for each class upgradeirin
“matches” the node. The node checks the filters in the ordgrdine presented in the configuration
file and installs the upgrade whose filter matches first. If herfinatches, the node is ufiected by
the upgrade.

So what is a filter? It could be just a boolean expression inestanguage that the nodes
understand. For example, a class upgrade could have thebfiltelwidthTo(12.34.56.78) >
10 Mbps, meaning the upgrade applies only to nodes whose bandvadhiethost with IP address
12.34.56.78 is greater than ten megabits per second. Bosutgpthis language is tricky, and this
language itself may need to evolve over time.

Instead, we can implement filters as downloadable routiilesscheduling functions. When a

node learns of a new version, it downloaddtar functiondefined for its current class in the system

148

www.manaraa.com

configuration. The filter function returns an identifier foetnew class of the class upgrade that the
node should next install, or “none” if the node is tieated by the new version.

This model avoids the need to introduce a new filter languagkeatiows the filter function to
examine the node state directly (perhaps using a metaaavsas discussed in Section 6.2.2). But
the node cannot run a filter function before it has upgradeithéoclass for which the function is
defined, because otherwise it may not be able to implementtibervers called by the filter.

The filter function must be restricted so that it is certaiteioninate. In particular, it must not
loop forever or wait indefinitely on remote method calls. Qvegy to ensure that the filter function
terminates with a valid return value is to define a time linmitla default return value for it, but this

only works when a sensible default exists.

Message-Passing Systems

Our approach models a distributed system as a set of obfettsdmmunicate using remote method
calls. This is appropriate for systems that use RPC [99] ofl R, but not for systems that use
general (one-way) message passing, like sensor networksvaMd like to be able to reason about
upgrades for message-passing systems in the same way wewtd=RC systems.

Many uses of one-way messages can be modeled as RPCs. Faiexheartbeat messages
can be modeled as RPCs that have no return value or excepiRawarsive lookups (as in DNS)
can be modeled as RPCs whose return value comes froffegeit node than the one that received
the call. Cumulative acknowledgments (as in TCP) can be taddas return values for sets of
outstanding RPCs. It may be possible to use such modelsgorredout upgrades and simulation
in message-passing systems.

Implementing upgrades for message-passing systems ighgtoaward, as Upstart already al-
lows simulation objects to manipulate individual messadéswever, Upstart is too heavyweight
for systems like sensor networks. Developing a lightweigpdgrade infrastructure for sensor net-
works is an interesting area for further research; the Tei¢g9] software dissemination protocol

may be a useful building block for such a system.

Security

An important issue in automatic software management isrgg¢d3]. Our infrastructure protects
the integrity of the system configuration, software, andragg definitions using digital signatures;

but we_ignore.issues.of authenticating the nodes in the myéite., ensuring upgrades are pro-

149

www.manaraa.com

vided only to licensed users) and protecting the privacyofifnsare components (because of their
intellectual property value). Providing these featuregumees straightforward extensions to our

infrastructure.

10.4 Conclusion

This thesis has presented a comprehensive approach fadprgautomatic software upgrades for
long-lived distributed systems. The approach is realistigvorks in environments where failures
are common and it is impractical to upgrade whole systemset.oThe approach is modular and
defines precise rules for reasoning about upgrades. Theagpincludes an infrastructure that
scales and performs well. Nonetheless, there remain manogssto explore, and | hope this work

inspires further research.

150

www.manaraa.com

Appendix A

Configurations

Theconfigurationof a system resides on the upgrade server and defines theadhiesach version
of the system. A configuration has an minimum version numlskm(ifies the minimum active

version), one or more initializers, and zero or more subeatjuersions:
config = (numberinitial +, version:)

e number> 1

The initializers identify the classes that belong to thesi@r 1 schema and define their implemen-

tations. Note that the minimum active version may be gretagan 1.
initial = (classlID, code library)

e codeimplements classlassID
o library definescreateProxy

The library in each initializer defines a static factory thegates proxy objects for that class. Proxies
are described in more detail in Chapter 7.
Versions define one or more class upgrades. Each class epgpadifies an oldclass whose

instances will be replaced by instances of newclass.

version

(number upgradet)

upgrade

(oldclassID newclassID library, type code sf, sfMaxSecstf)

151

www.manaraa.com

library = (createProxy createPastSQ createFutureSQ@ createBridgé&)

e codeimplements clasaewclassID

e Letconfig= (numinits, [v,...]), then

v.number= num+ 1 andoldclasseé/) = inits.classID

e Letconfig= (numinits,[...,u,v,...]), then

v.number= u.number+ 1 andoldclasseé/) = oldclassefu) — u.upgradeoldclassiD
e all v: version| v.upgradeoldclassIDcC oldclasseév)
e typeec {sametype, subtype, supertype, unrelated}
o If type=unrelated, thenlibrary definescreateBridge
o If typee {subtype, unrelated}, thenlibrary definescreateFutureSO
o If typee {supertype,unrelated}, thenlibrary definescreatePastSO

The SF determines when a node runniotdclassshould upgrade, and thE- produces state for
newclasgrom the state obldclassand the newclass future SO. T axSecsttribute is a failsafe
that causes nodes to upgrade at nafistaxSecseconds after the SF is invoked.

We can extend the model to allow new classes to be introduicectlgt in later schema (rather

than just as replacements for earlier classes):

version = (number (upgrade| initial)+)

Extending the model in this way (and extendiagstart andupcheck appropriately) is future
work.

The state of anodeis determined by the installation of an initializer and sedpgent class up-
grades. A node has a current class; current, minimum, andnmouax supported version numbers;

and libraries that define SOs and proxies for certain vession

node (classID, minv, curv, maxy libraries)

libraries (libv, library)+

e Minv < curv < maxv

152

www.manaraa.com

e (curv,l) € libraries, andl definescreateProxy

e If (v,I) € libraries, thenminv < v < maxv

AL i

www.manharaa.com

Appendix B

Dispatch Tables and Delegation Chains

The following is pseudocode for initializing the dispateible and delegation chains of a node ac-
cording to the hybrid simulation model described in Sectigh A call for versiorv is dispatched to
the objechandler[v]. The methodgreateFutureSO, createBridge andcreatePastSO each
take a reference to the delegate of the object to create,hanfir$t two also take a flag indicating
whether the object is running as an interceptor.

initialize dispatch table to an empty map
handler = {}
isInterceptor = true

create proxy
delegate = handler[curv] = upgrade[curv].createProxy()

create future SOs
for v from curv+l up to maxv:
switch upgrade[v].type:
case skipped or sametype:
handler[v] = delegate
case subtype:
handler[v] = upgrade[v].createFutureSO(delegate, isInterceptor)
case supertype:
isInterceptor = false
handler[v] = delegate
case unrelated:
bridge = upgrade[v].createBridge(delegate, isInterceptor)
bridge takes over calls for its delegate
for u from curv up to v-1:
if isInterceptor or (handler[u] == delegate):
handler[u] = bridge
isInterceptor = false
handler[v] = upgrade[v].createFutureSO(bridge, false)
if latest object intercepts, reassign previous versions to it
if isInterceptor:
for u from curv up to v:

154

www.manaraa.com

handler[u] = handler[v]
delegate = handler[v]
end create future SOs

create past SOs
delegate = handler[curv] # this may no longer be the proxy
the past SO for v-1 is defined by the version v upgrade
for v from curv down to minv+1:
switch upgrade[v].type:
case skipped or sametype or subtype:
handler[v-1] = delegate
case supertype or unrelated:
handler[v-1] = upgrade[v].createPastSO(delegate)
delegate = handler[v-1]
end create past SOs

155

www.manharaa.com

Bibliography

[1]
[2]
[3]
[4]

[5]
[6]

[7]
[8]
[9]

[10]

[11]
[12]
[13]
[14]

[15]

APT HOWTO. http://www.debian.org/doc/manuals/apt-howto/.
Battle.net multiplayer online game servemw.battle.net.
Cisco Resource Managétittp: //www.cisco.com/warp/public/cc/pd/wr2k/rsmn/.

Common object request broker architecture (CORBA) eprecificationhttp: //www.omg.

org/technology/documents/formal/corba_iiop.htm.
EMC OnCoursehttp://www.emc.com/products/software/oncourse. jsp.

Folding@Home distributed computing. http://www.stanford.edu/group/

pandegroup/folding/.

The Gnucleus open-source Gnutella clidmttp: //www.gnucleus.com/Gnucleus/.
Kazaa.http://www.kazaa.com/.

Marimba.http://www.marimba.com/.

Red Hat up2date.http://www.redhat.com/docs/manuals/RHNetwork/ref-guide/
up2date.html.

Sony Online Entertainmenhttp://sonyonline.com/.

Apache HTTP server project, 199bttp://httpd.apache.org/.
The GNU privacy guard, 199%ttp: //www.gnupg.org/.
Akamai, 2000 http://akamai.com/.

The Gnutella file sharing protocol, 200Bttp: //rfc-gnutella. sourceforge.net.

156

www.manaraa.com

[16] Windows 2000 clustering: Performing a rolling upgra@®0o0.
[17] GNU wget, 2001http://www.gnu.org/software/wget/wget.html.

[18] Managing automatic updating and download technolgi® Windows XP. http:
//www.microsoft.com/WindowsXP/pro/techinfo/administration/manageau%

toupdate/default.asp, 2002.
[19] GMail: A Google approach to email, 2004t tp: //www.gmail . com.

[20] Sameer Ajmani. A review of software upgrade technigfmesdistributed systems. August

2002.

[21] Joao Paulo A. Almeida, Maarten Wegdam, Marten van Sardeand Lambert Nieuwenhuis.

Transparent dynamic reconfiguration for CORBA, 2001.

[22] S. Amer-Yahia, P. Breche, and C. Souza. Object viewswgpuahtes. IrProc. of Journes
Bases de Donnes Avancd996.

[23] Siddhartha Annapureddy, Michael J. Freedman, anddisladzires.http://www.scs.cs.
nyu.edu/ reddy/sahakara/sahakara.html, 2004.

[24] M. Barbacci et al. Building fault-tolerant distributeapplications with Durra. In Intl. Conf.
on Configurable Dist. Systems [63], pages 128-139. Also2i jtages 83—94.

[25] Donnie Barnes. RPM HOWTttp: //www.rpm.org/RPM-HOWTO/, November 1999.

[26] T. Bartoletti, L. A. Dobbs, and M. Kelley. Secure softealistribution system. IRroc. 20th
NIST-NCSC National Information Systems Security Cpafjes 191-201, 1997.

[27] Luc Bellissard, Slim Ben Atallah, Fabienne Boyer, antthél Riveill. Distributed applica-
tion configuration. Irintl. Conf. on Dist. Computing Systenpages 579-585, 1996.

[28] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A dyma reconfiguration service for
CORBA. In4th Intl. Conf. on Configurable Dist. Systenmages 35-42, Annapolis, MD,
May 1998.

[29] Toby Bloom. Dynamic Module Replacement in a Distributed Programminge®ys PhD
thesis, MIT, 1983. Also available as MIT LCS Tech. Report.303

157

www.manaraa.com

[30] Toby Bloom and Mark Day. Reconfiguration in Argus. Inlif€onf. on Configurable Dist.
Systems [63], pages 176—-187. Also in [62], pages 102—-108.

[31] Chandrasekhar Boyapati, Barbara Liskov, Liuba ShfMauang-Hue Moh, and Steven Rich-
man. Lazy modular upgrades in persistent object storesAdM Conference on Object-
Oriented Programming, Systems, Languages, and Applitaii@ OPSLA)Anaheim, Cali-
fornia, October 2003.

[32] Philippe Breche, Fabrizio Ferrandina, and Martin Kakkl Simulation of schema change

using views. InDatabase and Expert Systems Applicatiqreges 247—-258, 1995.
[33] Eric A. Brewer. Lessons from giant-scale servicBsEE Internet ComputingJuly 2001.

[34] Sergey Brin and Lawrence Page. The anatomy of a largkedtypertextual Web search
engine.Computer Networks and ISDN SysteB®(1-7):107-117, 1998.

[35] A. Brown and D. A. Patterson. Rewind, Repair, ReplayreEhR’s to dependability. 1t0th
ACM SIGOPS European Workshdaint-Emilion, France, September 2002.

[36] B. Callaghan, B. Pawlowski, and P. Staubach. NFS ver8iprotocol specification. RFC
1813, Network Working Group, June 1995.

[37] Miguel Castro and Barbara Liskov. Proactive recoveryiByzantine-fault-tolerant system.

In Proceedings of the 4th OS[®$an Diego, USA, October 2000.

[38] M. R. V. Chaudron and F. van de Laar. An upgrade mechahiased on publighubscribe
interaction. In Workshop on Dependable On-line UpgradihBist. Systems [107].

[39] Bram Cohen. BitTorrent, 200http://bitconjurer.org/BitTorrent.

[40] Jonathan E. Cook andflery A. Dage. Highly reliable upgrading of components. Intl.
Conf. on Software Engineeringos Angeles, CA, 1999.

[41] David H. Crocker. Standard for the format of ARPA Intetrtext messages. RFC 882,
University of Delaware, August 1982.

[42] Frank Dabek, M. Frans Kaashoek, David Karger, Robertridoand lon Stoica. Wide-
area cooperative storage with CFS.Symposium on Operating System Principles (SQSP)

October.2001.

158

www.manaraa.com

[43] P. Devanbu, M. Gertz, and S. Stubblebine. Security tbomated, distributed configuration
management. IKCSE Workshop on Software Engineering over the Interisetil 1999.

[44] Chryssa Dislis. Improving service availability viaweoutage upgrades. In Workshop on

Dependable On-line Upgrading of Dist. Systems [107].

[45] Huw Evans and Peter Dickman. DRASTIC: A run-time aretitre for evolving, distributed,
persistent systemé.ecture Notes in Computer Sciend241:243-??, 1997.

[46] R. S. Fabry. How to design systems in which modules caohamged on the fly. Iintl.
Conf. on Software Engineering976.

[47] Michael J. Freedman, Eric Freudenthal, and David Mezir Democratizing content pub-
lication with Coral. Inlst USENIYACM Symposium on Networked Systems Design and
Implementation (NSDI '04)San Francisco, CA, March 2004.

[48] Ophir Frieder and Mark E. Segal. On dynamically updgtancomputer program: From
concept to prototypelournal of Systems and Softwapages 111-128, February 1991.

[49] Kevin Fu, M. Frans Kaashoek, and David Maziéres. Fadtsecure distributed read-only

file system.ACM Transactions on Computer Syste2®(1):1-24, February 2002.

[50] Erich Gamma, Richard Helm, Ralph Johnson, and Johrsiks.Design Patterns: Elements
of Reusable Object-Oriented Softwaohapter 4: Structural Patterns: Adapter, pages 139—
150. Addison-Wesley, 1995.

[51] Sanjay Ghemawat. Google, Inc., personal communicag602.

[52] Stephen Gilmore, Dilsun Kirli, and Chris Walton. DynanML without dynamic types.
Technical Report ECS-LFCS-97-378, University of Edintbyecember 1997.

[53] R. Govindan, C. Alaettino, and D. Estrin. A framework &xtive distributed services. Tech-

nical Report 98-669, ISI-USC, 1998.

[54] Deepak Gupta and Pankaj Jalote. On-line software aershange using state transfer be-

tween processesoftware Practice and Experienc3(9):949-964, September 1993.

[55] Richard S. Hall, Dennis Heimbeigner, Andre van der Homkd Alexander L. Wolf. An
architecture for post-development configuration managrinea wide-area network. Iimtl.

Conf-on.Bist-Computing Systeniday 1997.

159

www.manaraa.com

[56] M. Herlihy and B. Liskov. A value transmission method &bstract data type®ACM Trans-
actions on Programming Languages and Sysiet(®):527-551, 1982.

[57] Michael W. Hicks, Jonathan T. Moore, and Scott Nettl®ynamic software updating. In
SIGPLAN Conf. on Programming Language Design and Implestient pages 13—23, 2001.

[58] Gilsi Hjalmtysson and Robert Gray. Dynamic+& classes—A lightweight mechanism to
update code in a running program. USENIX Annual Technical Conpages 65-76, June
1998.

[59] Christine R. Hofmeister and James M. Purtilo. A framewor dynamic reconfiguration of
distributed programs. Technical Report CS-TR-3119, Uit of Maryland, College Park,
1993.

[60] Markus Horstmann and Mary Kirtland. DCOM architectudally 1997. Microsoft Dis-
tributed Component Object Model.

[61] J. H. Howard. An overview of the andrew file system.USENIX Conference Proceedings

pages 213-216, Dallas, TX, 1988.

[62] IEE Software Engineering Journal, Special Issue on Condigler Dist. SystemaNumber 2
in 8. IEE, March 1993.

[63] Intl. Workshop on Configurable Dist. Systemendon, England, March 1992.

[64] Michael Kaminsky, George Savvides, David Mazieras] M. Frans Kaashoek. Decentral-
ized user authentication in a global file systemPhceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ,(#ges 60—73, Bolton Landing, New York, Oc-
tober 2003.

[65] Deepak Kapur. Towards a theory for abstract data typeshnical Report MIT-LCS-TR-237,
MIT, June 1980.

[66] J.Kramer and J. Magee. The Evolving Philosophers BrabDynamic change management.

IEEE Transactions on Software Engineeriig(11):1293-1306, November 1990.
[67] B. W. Lampson. Hints for computer system designPhoceedings of the 9th ACM Sympo-

sium on Operating Systems Principles (SQ$Blume 17, pages 33-48, 1983.

160

www.manaraa.com

[68] Barbara Staudt Lerner. A model for compound type charggecountered in schema evolu-

tion. ACM Transactions on Database Systef%{1):83—-127, 2000.

[69] Philip Levis, Neil Patel, David Culler, and Scott ShenKTrickle: A self-regulating algorithm
for code propagation and maintenance in wireless sensaonet. In Proceedings of the
First USENIXACM Symposium on Networked Systems Design and ImplemeantisitsDI)
March 2004.

[70] Benjamin C. Ling, Emre Kiciman, and Armando Fox. Sessstate: Beyond soft state. In

Networked Systems Design and Implementation (NpBles 295-308, March 2004.

[71] Barbara Liskov, Miguel Castro, Liuba Shrira, and Atullya. Providing persistent objects in
distributed systems. IBuropean Conf. on Object-Oriented Programmitigne 1999.

[72] Barbara Liskov and John GuttaBrogram Development in Jav#ddison-Wesley, 2001.

[73] Barbara Liskov and Jeannette Wing. A behavioral nottbsubtyping. ACM Transactions
on Programming Languages and Systefr§{6):1811-1841, November 1994.

[74] Chang Liu and Debra J. Richardson. Using RAIC for dejadahel on-line upgrading of dis-
tributed systems. In Workshop on Dependable On-line Upggadf Dist. Systems [107].

[75] Scott Malabarba, Raju PandeyffJ&ragg, Earl Barr, and J. Fritz Barnes. Runtime support
for type-safe dynamic Java classes. Haropean Conf. on Object-Oriented Programming
2000.

[76] David Mazieres, Michael Kaminsky, M. Frans Kaashaahg Emmett Witchel. Separating
key management from file system security. Rroceedings of the 17th ACM Symposium
on Operating Systems Principles (SOSPgges 124-139, Kiawah Island, South Carolina,
December 1999.

[77] Stephen McCamant and Michael D. Ernst. Predicting lermls caused by component up-
grades. In10th European Software Engineering Conference and the ACtM SIGSOFT
Symposium on the Foundations of Software Enginegpages 287-296, Helsinki, Finland,
September 2003.

161

www.manaraa.com

[78] B. Meyer, S. Zlatintsis, and C. Popien. Enabling interking between heterogeneous dis-
tributed platforms. InIFIP/AEEE Intl. Conf. on Dist. Platforms (ICDR)ages 329-341.
Chapman & Hall, 1996.

[79] Sun Microsystems. Java RMI specification, October 1998

[80] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and Pw&ch. ARIES: A transaction
method supporting fine-granularity locking and partiallvatks using write-ahead logging.

ACM Transactions on Database Systefi&1), March 1992.

[81] Simon Monk and lan Sommerville. A model for versioninfabasses in object-oriented

databases. IRroceedings of BNCOD]l@ages 42-58, Aberdeen, 1992. Springer Verlag.

[82] H. Nielsen, P. Leach, and S. Lawrence. An HTTP extengmmework. RFC 2774, Network
Working Group, February 2000.

[83] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skedie Information Bus: An archi-
tecture for extensible distributed systems. 14th ACM Symposium on Operating System

Principals Asheville, NC, 1993.

[84] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architectdbased runtime software evolution.
In Intl. Conf. on Software Engineeringyoto, Japan, April 1998.

[85] Vivek Pai et al. CoDeeN.

[86] KyoungSoo Park, Vivek Pai, and Larry Peterson. CoDgpfoscalable deployment service
for PlanetLabhttp://codeen.cs.princeton.edu/codeploy/, 2004.

[87] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. Aephint for introducing disruptive
technology into the Internet. Im Proceedings of the 1st Workshop on Hot Topics in Networks

(HotNets-I) October 2002. PlanetLab.

[88] P. Reichl, D. Thizen, and C. LinnfePopien. How to enhance service selection in distributed
systems. Irintl. Conf. Dist. Computer Communication Networks—Themg Applications
pages 114-123, Tel-Aviv, November 1996.

[89] Joel Richardson and Peter Schwarz. Aspects: Extermijgrts to support multiple, inde-
pendent roles. IRroc. of the ACM SIGMOD Intl. Conf. on Management of Datdume 20,
pages 298-307, May 1991.

162

www.manaraa.com

[90] Tobias Ritzau and Jesper Andersson. Dynamic deployofelava applications. I8ava for

Embedded Systems Workshibpndon, May 2000.

[91] Mendel Rosenblum and John K. Ousterhout. The designimpiementation of a log-

structured file systemACM Transactions on Computer Systei3(1):26-52, 1992.

[92] Jon Salz, Alex C. Snoeren, and Hari Balakrishnan. TESA &kansparent, extensible session-
layer architecture for end-to-end network serviceRioc. of the Fourth USENIX Symposium

on Internet Technologies and Systems (USITWBch 2003.

[93] Twittie Senivongse. Enabling flexible cross-versiateroperability for distributed services.

In Intl. Symposium on Dist. Objects and ApplicatioBslinburgh, UK, 1999.

[94] Twittie Senivongse and lan Utting. A model for evolutiof services in distributed sys-
tems. In Spaniol Schill, Mittasch and Popien, edit@stributed Platformspages 373-385.
Chapman and Hall, January 1996.

[95] Lui Sha, Ragunathan Rajkuman, and Michael GagliardioNgng dependable real-time
systems. Technical Report CY&EI-95-TR-005, CMU, 1995.

[96] Michael E. Shaddock, Michael C. Mitchell, and Helen Earkison. How to upgrade 1500
workstations on Saturday, and still have time to mow the yar&unday. IProc. of the 9th

USENIX Sys. Admin. Conpages 59-66, Berkeley, September 1995. Usenix Assatiatio

[97] Andrea H. Skarra and Staney B. Zdonik. The managemeohaifging types in an object-
oriented database. @MOPSLApages 483-495, 1986.

[98] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, RoWgrtwisniewski, Dilma Da Silva,
Gregory R. Ganger, Orran Krieger, Michael Stumm, Marc Andé, Michal Ostrowski,
Bryan Rosenburg, and Jimi Xenidis. System support for enteconfiguration. IiProc. of

the Usenix Technical Conferen@003.

[99] R. Srinivasan. RPC: Remote procedure call specifinatiersion 2. RFC 1831, Network
Working Group, August 1995.

[100] lon Stoica, Robert Morris, David Karger, M. Frans Klaaesk, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet appilons. InProceedings of the ACM

SIGCOMM.'01.Conferencesan Diego, California, August 2001.

163

www.manaraa.com

[101] Michael Stonebraker and Lawrence A. Rowe. The desfdPostGres. I'8IGMOD Confer-

ence 1986.http://citeseer.ist.psu.edu/stonebraker86design.html

[102] L. A. Tewksbury, L. E. Moser, and P. M. Melliar-Smith.ive upgrades of CORBA applica-
tions using object replication. IEEEE Intl. Conf. on Software Maintenance (ICSMages
488-497, Florence, Italy, November 2001.

[103] Ajay Tirumala, Les Cottrell, Connie Logg, and I-HengeM Disk throughputs.http://

www-iepm.slac.stanford.edu/bw/disk_res.html.

[104] A. Trigdell and P. Mackerras. The rsync algorithm. fieical report, 1998http://rsync.

samba.org.
[105] Robert K. Weiler. Automatic upgrades: A hands-on psxinformation WeekMarch 2002.

[106] Linda Wills et al. An open platform for reconfigurablerdrol. IEEE Control Systems Mag-
azine June 2001.

[107] Workshop on Dependable On-line Upgrading of Dist. System®ijunction with COMP-
SAC 20020xford, England, August 2002.

[108] Robert Wrembel. Object-oriented views: Virtues amditations. In13th International

Symposium on Computer and Information Sciences (IS@8alya, November 1998.

164

www.manaraa.com

